Hyperspectral signal subspace estimation

被引:26
|
作者
Nascimento, Jose M. P. [1 ]
Bioucas-Dias, Jose M. [2 ]
机构
[1] Inst Super Engn Lisboa, 1 Edificio DEETC, P-1959007 Lisbon, Portugal
[2] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomun, P-1049001 Lisbon, Portugal
关键词
D O I
10.1109/IGARSS.2007.4423531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
引用
收藏
页码:3225 / +
页数:2
相关论文
共 50 条
  • [1] A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11): : 3844 - 3856
  • [2] Signal subspace identification in hyperspectral linear mixtures
    Nascimento, JMP
    Dias, JMB
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 207 - 214
  • [3] Hyperspectral anomaly detection within the signal subspace
    Ranney, Kenneth I.
    Soumekh, Mehrdad
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (03) : 312 - 316
  • [4] Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04): : 1940 - 1954
  • [5] ESTIMATION OF NUMBER OF SIGNAL SUBSPACES IN HYPERSPECTRAL IMAGERY USING LOW-RANK SUBSPACE REPRESENTATION
    Sumarsono, Alex
    Du, Qian
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [6] Noise estimation for hyperspectral subspace identification on FPGAs
    Germán León
    Carlos González
    Rafael Mayo
    Daniel Mozos
    Enrique S. Quintana-Ortí
    [J]. The Journal of Supercomputing, 2019, 75 : 1323 - 1335
  • [7] Noise estimation for hyperspectral subspace identification on FPGAs
    Leon, German
    Gonzalez, Carlos
    Mayo, Rafael
    Mozos, Daniel
    Quintana-Orti, Enrique S.
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1323 - 1335
  • [8] Unmixing hyperspectral data by using signal subspace sampling
    Spiegelberg, Jakob
    Muto, Shunsuke
    Ohtsuka, Masahiro
    Pelckmans, Kristiaan
    Rusz, Jan
    [J]. ULTRAMICROSCOPY, 2017, 182 : 205 - 211
  • [9] Kernel orthogonal subspace projection for hyperspectral signal classification
    Kwon, H
    Nasrabadi, NM
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (12): : 2952 - 2962
  • [10] Fast and Reliable Noise Estimation for Hyperspectral Subspace Identification
    Benner, Peter
    Novakovic, Vedran
    Plaza, Antonio
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1199 - 1203