Hyperspectral Subspace Identification Using SURE

被引:34
|
作者
Rasti, Behnood [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
机构
[1] Univ Iceland, Dept Elect & Comp Engn, IS-107 Reykjavik, Iceland
基金
美国国家科学基金会;
关键词
Hyperspectral imaging (HSI); mean squared error (MSE); model selection; rank selection; Stein's unbiased risk estimator (SURE); tuning parameter selection; IMAGE-RESTORATION;
D O I
10.1109/LGRS.2015.2485999
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The identification of the signal subspace is a very important first step for most hyperspectral algorithms. In this letter, we investigate the important problem of identifying the hyperspectral signal subspace by minimizing the mean squared error (MSE) between the true signal and an estimate of the signal. Since it is dependent on the true signal, the MSE is uncomputable in practice, and so we propose a method based on Stein's unbiased risk estimator that provides an unbiased estimate of the MSE. The resulting method is simple and fully automatic, and we evaluate it using both simulated and real hyperspectral data sets. Experimental results show that our proposed method compares well to recent state-of-the-art subspace identification methods.
引用
收藏
页码:2481 / 2485
页数:5
相关论文
共 50 条
  • [1] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [2] Noise estimation for hyperspectral subspace identification on FPGAs
    Germán León
    Carlos González
    Rafael Mayo
    Daniel Mozos
    Enrique S. Quintana-Ortí
    The Journal of Supercomputing, 2019, 75 : 1323 - 1335
  • [3] Noise estimation for hyperspectral subspace identification on FPGAs
    Leon, German
    Gonzalez, Carlos
    Mayo, Rafael
    Mozos, Daniel
    Quintana-Orti, Enrique S.
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1323 - 1335
  • [4] Signal subspace identification in hyperspectral linear mixtures
    Nascimento, JMP
    Dias, JMB
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3523 : 207 - 214
  • [5] Fast and Reliable Noise Estimation for Hyperspectral Subspace Identification
    Benner, Peter
    Novakovic, Vedran
    Plaza, Antonio
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1199 - 1203
  • [6] Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04): : 1940 - 1954
  • [7] Unmixing hyperspectral data by using signal subspace sampling
    Spiegelberg, Jakob
    Muto, Shunsuke
    Ohtsuka, Masahiro
    Pelckmans, Kristiaan
    Rusz, Jan
    ULTRAMICROSCOPY, 2017, 182 : 205 - 211
  • [8] SUBSPACE SELECTION FOR HYPERSPECTRAL PANSHARPENING USING SPARSE UNMIXING
    Ge Chiru
    Li Yunsong
    Li Jiaojiao
    Wang Keyan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7232 - 7235
  • [9] ALGORITHMS FOR ROBUST SIGNAL SUBSPACE IDENTIFICATION IN HYPERSPECTRAL IMAGES: A COMPARATIVE ANALYSIS
    Acito, N.
    Corsini, G.
    Diani, M.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 50 - +
  • [10] Spectral-spatial Classification of Hyperspectral Images Using Signal Subspace Identification and Edge-preserving Filter
    Alborzi, Negin
    Poorahangaryan, Fereshteh
    Beheshti, Homayoun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (02) : 222 - 232