ST-HMP: Unsupervised Spatio-Temporal Feature Learning for Tactile Data

被引:0
|
作者
Madry, Marianna [1 ,2 ]
Bo, Liefeng [3 ,4 ]
Kragic, Danica [1 ,2 ]
Fox, Dieter [5 ]
机构
[1] KTH Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Comp Vis & Act Percept Lab, Stockholm, Sweden
[3] Amazon Inc, Seattle, WA USA
[4] Intel Sci & Technol Ctr Pervas Comp, Seattle, WA USA
[5] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactile sensing plays an important role in robot grasping and object recognition. In this work, we propose a new descriptor named Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) that captures properties of a time series of tactile sensor measurements. It is based on the concept of unsupervised hierarchical feature learning realized using sparse coding. The ST-HMP extracts rich spatio-temporal structures from raw tactile data without the need to predefine discriminative data characteristics. We apply it to two different applications: (1) grasp stability assessment and (2) object instance recognition, presenting its universal properties. An extensive evaluation on several synthetic and real datasets collected using the Schunk Dexterous, Schunk Parallel and iCub hands shows that our approach outperforms previously published results by a large margin.
引用
收藏
页码:2262 / 2269
页数:8
相关论文
共 50 条
  • [41] GradTac: Spatio-Temporal Gradient Based Tactile Sensing
    Ganguly, Kanishka
    Mantripragada, Pavan
    Parameshwara, Chethan M.
    Fermueller, Cornelia
    Sanket, Nitin J.
    Aloimonos, Yiannis
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [42] Spatio-temporal processing of tactile stimuli in autistic children
    Makoto Wada
    Mayuko Suzuki
    Akiko Takaki
    Masutomo Miyao
    Charles Spence
    Kenji Kansaku
    Scientific Reports, 4
  • [43] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [44] Unsupervised Learning Spatio-temporal Features for Human Activity Recognition from RGB-D Video Data
    Chen, Guang
    Zhang, Feihu
    Giuliani, Manuel
    Buckl, Christian
    Knoll, Alois
    SOCIAL ROBOTICS, ICSR 2013, 2013, 8239 : 341 - 350
  • [45] Spatio-temporal Attention Model for Tactile Texture Recognition
    Cao, Guanqun
    Zhou, Yi
    Bollegala, Danushka
    Luo, Shan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 9896 - 9902
  • [46] Spatio-temporal processing of tactile stimuli in autistic children
    Wada, Makoto
    Suzuki, Mayuko
    Takaki, Akiko
    Miyao, Masutomo
    Spence, Charles
    Kansaku, Kenji
    SCIENTIFIC REPORTS, 2014, 4
  • [47] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [48] A Case of Perceptual Completion in Spatio-Temporal Tactile Space
    Kaneko, Seitaro
    Kajimoto, Hiroyuki
    Hayward, Vincent
    HAPTICS: SCIENCE, TECHNOLOGY, AND APPLICATIONS, PT I, 2018, 10893 : 49 - 57
  • [49] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [50] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)