ST-HMP: Unsupervised Spatio-Temporal Feature Learning for Tactile Data

被引:0
|
作者
Madry, Marianna [1 ,2 ]
Bo, Liefeng [3 ,4 ]
Kragic, Danica [1 ,2 ]
Fox, Dieter [5 ]
机构
[1] KTH Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Comp Vis & Act Percept Lab, Stockholm, Sweden
[3] Amazon Inc, Seattle, WA USA
[4] Intel Sci & Technol Ctr Pervas Comp, Seattle, WA USA
[5] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactile sensing plays an important role in robot grasping and object recognition. In this work, we propose a new descriptor named Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) that captures properties of a time series of tactile sensor measurements. It is based on the concept of unsupervised hierarchical feature learning realized using sparse coding. The ST-HMP extracts rich spatio-temporal structures from raw tactile data without the need to predefine discriminative data characteristics. We apply it to two different applications: (1) grasp stability assessment and (2) object instance recognition, presenting its universal properties. An extensive evaluation on several synthetic and real datasets collected using the Schunk Dexterous, Schunk Parallel and iCub hands shows that our approach outperforms previously published results by a large margin.
引用
收藏
页码:2262 / 2269
页数:8
相关论文
共 50 条
  • [21] Unsupervised Learning of Spatio-Temporal Representation with Multi-Task Learning for Video Retrieval
    Kumar, Vidit
    2022 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2022, : 118 - 123
  • [22] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Louai Alarabi
    Mohamed F. Mokbel
    Mashaal Musleh
    GeoInformatica, 2018, 22 : 785 - 813
  • [23] Spatio-Temporal Anomaly Detection for Industrial Robots through Prediction in Unsupervised Feature Space
    Munawar, Asim
    Vinayavekhin, Phongtharin
    De Magistris, Giovanni
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1017 - 1025
  • [24] ST-Hadoop: a MapReduce framework for spatio-temporal data
    Alarabi, Louai
    Mokbel, Mohamed F.
    Musleh, Mashaal
    GEOINFORMATICA, 2018, 22 (04) : 785 - 813
  • [25] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700
  • [26] ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data
    Alarabi, Louai
    Mokbel, Mohamed F.
    Musleh, Mashaal
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, SSTD 2017, 2017, 10411 : 84 - 104
  • [27] Temporal and Spatio-temporal domains for Neuromorphic Tactile Texture Classification
    Brayshaw, George
    Ward-Cherrier, Benjamin
    Pearson, Martin
    PROCEEDINGS OF THE 2022 ANNUAL NEURO-INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE (NICE 2022), 2022, : 50 - 57
  • [28] Temporal and spatio-temporal attention to tactile stimuli in extinction patients
    Guerrini, C
    Aglioti, SM
    CORTEX, 2006, 42 (01) : 17 - 27
  • [29] Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning
    Karadayi, Yildiz
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 167 - 182
  • [30] UNSUPERVISED DEEP LEARNING APPROACH TO ANALYZE SPATIO-TEMPORAL CHANGE IN SATELLITE IMAGERY
    Nukavarapu, Nivedita
    Yang, Jiue-An
    Jankowska, Marta M.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2496 - 2499