ST-HMP: Unsupervised Spatio-Temporal Feature Learning for Tactile Data

被引:0
|
作者
Madry, Marianna [1 ,2 ]
Bo, Liefeng [3 ,4 ]
Kragic, Danica [1 ,2 ]
Fox, Dieter [5 ]
机构
[1] KTH Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Comp Vis & Act Percept Lab, Stockholm, Sweden
[3] Amazon Inc, Seattle, WA USA
[4] Intel Sci & Technol Ctr Pervas Comp, Seattle, WA USA
[5] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactile sensing plays an important role in robot grasping and object recognition. In this work, we propose a new descriptor named Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) that captures properties of a time series of tactile sensor measurements. It is based on the concept of unsupervised hierarchical feature learning realized using sparse coding. The ST-HMP extracts rich spatio-temporal structures from raw tactile data without the need to predefine discriminative data characteristics. We apply it to two different applications: (1) grasp stability assessment and (2) object instance recognition, presenting its universal properties. An extensive evaluation on several synthetic and real datasets collected using the Schunk Dexterous, Schunk Parallel and iCub hands shows that our approach outperforms previously published results by a large margin.
引用
收藏
页码:2262 / 2269
页数:8
相关论文
共 50 条
  • [31] Deep video action clustering via spatio-temporal feature learning
    Peng, Bo
    Lei, Jianjun
    Fu, Huazhu
    Jia, Yalong
    Zhang, Zongqian
    Li, Yi
    NEUROCOMPUTING, 2021, 456 : 519 - 527
  • [32] Interactive spatio-temporal feature learning network for video foreground detection
    Hongrui Zhang
    Huan Li
    Complex & Intelligent Systems, 2022, 8 : 4251 - 4263
  • [33] Guest Editorial: Spatio-temporal Feature Learning for Unconstrained Video Analysis
    Han, Yahong
    Nie, Liqiang
    Wu, Fei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29209 - 29211
  • [34] A Spatio-Temporal Feature Trajectory Clustering Algorithm Based on Deep Learning
    He, Xintai
    Li, Qing
    Wang, Runze
    Chen, Kun
    ELECTRONICS, 2022, 11 (15)
  • [35] Interactive spatio-temporal feature learning network for video foreground detection
    Zhang, Hongrui
    Li, Huan
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4251 - 4263
  • [36] Guest Editorial: Spatio-temporal Feature Learning for Unconstrained Video Analysis
    Yahong Han
    Liqiang Nie
    Fei Wu
    Multimedia Tools and Applications, 2018, 77 : 29209 - 29211
  • [37] Spatio-Temporal Frequency Domain Analysis of PMU Data for Unsupervised Event Detection
    Senaratne, Dilan
    Kim, Jinsub
    Cotilla-Sanchez, Eduardo
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [38] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    PERCEPTION, 2012, 41 : 58 - 58
  • [39] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12
  • [40] PULSE NUMBER DISCRIMINATION IN TACTILE SPATIO-TEMPORAL PATTERNS
    LECHELT, EC
    PERCEPTUAL AND MOTOR SKILLS, 1974, 39 (02) : 815 - 822