Spatio-Temporal Split Learning

被引:4
|
作者
Kim, Joongheon [1 ]
Park, Seunghoon [1 ]
Jung, Soyi [1 ]
Yoo, Seehwan [2 ]
机构
[1] Korea Univ, Seoul, South Korea
[2] Dankook Univ, Yongin, South Korea
基金
新加坡国家研究基金会;
关键词
Split learning; privacy-preserving; deep learning;
D O I
10.1109/DSN-S52858.2021.00016
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel split learning framework with multiple end-systems in order to realize privacy-preserving deep neural network computation. In conventional split learning frameworks, deep neural network computation is separated into multiple computing systems for hiding entire network architectures. In our proposed framework, multiple computing end-systems are sharing one centralized server in split learning computation, where the multiple end-systems are with input and first hidden layers and the centralized server is with the other hidden layers and output layer. This framework, which is called as spatio-temporal split learning, is spatially separated for gathering data from multiple end-systems and also temporally separated due to the nature of split learning. Our performance evaluation verifies that our proposed framework shows near-optimal accuracy while preserving data privacy.
引用
收藏
页码:11 / 12
页数:2
相关论文
共 50 条
  • [1] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    [J]. PERCEPTION, 2012, 41 : 58 - 58
  • [2] Spatio-Temporal Meta Contrastive Learning
    Tang, Jiabin
    Xia, Lianghao
    Hu, Jie
    Huang, Chao
    [J]. PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2412 - 2421
  • [3] Convolutional Learning of Spatio-temporal Features
    Taylor, Graham W.
    Fergus, Rob
    LeCun, Yann
    Bregler, Christoph
    [J]. COMPUTER VISION - ECCV 2010, PT VI, 2010, 6316 : 140 - 153
  • [4] Learning spatio-temporal relational structures
    Bischof, WF
    Caelli, T
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2001, 15 (08) : 707 - 722
  • [5] Spatio-Temporal Multimodal Developmental Learning
    Zhang, Yilu
    Weng, Juyang
    [J]. IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2010, 2 (03) : 149 - 166
  • [6] LEARNING SPATIO-TEMPORAL REPRESENTATIONS WITH TEMPORAL SQUEEZE POOLING
    Huang, Guoxi
    Bors, Adrian G.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2103 - 2107
  • [7] Spatio-Temporal binding: An adaptation of the peak interval procedure to assess spatio-temporal learning in rats
    Malet-Karas, Aurore
    Noulhiane, Marion
    Doyere, Valerie
    [J]. INTERNATIONAL CONFERENCE ON TIMING AND TIME PERCEPTION, 2014, 126 : 254 - 254
  • [8] Spatio-temporal Active Learning for Visual Tracking
    Liu, Chenfeng
    Zhu, Pengfei
    Hu, Qinghua
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Learning to track for spatio-temporal action localization
    Weinzaepfel, Philippe
    Harchaoui, Zaid
    Schmid, Cordelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3164 - 3172
  • [10] Spatio-temporal Learning with Arrays of Analog Nanosynapses
    Bennett, Christopher H.
    Querlioz, Damien
    Klein, Jacques-Olivier
    [J]. PROCEEDINGS OF THE IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 2017), 2017, : 125 - 130