Convolutional Learning of Spatio-temporal Features

被引:0
|
作者
Taylor, Graham W. [1 ]
Fergus, Rob [1 ]
LeCun, Yann [1 ]
Bregler, Christoph [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
关键词
unsupervised learning; restricted Boltzmann machines; convolutional nets; optical flow; video analysis; activity recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of learning good features for understanding video data. We introduce a model that learns latent representations of image sequences from pairs of successive images. The convolutional architecture of our model allows it to scale to realistic image sizes whilst using a compact parametrization. In experiments on the NORB dataset, we show our model extracts latent "flow fields" which correspond to the transformation between the pair of input frames. We also use our model to extract low-level motion features in a multi-stage architecture for action recognition, demonstrating competitive performance on both the KTH and Hollywood2 datasets.
引用
收藏
页码:140 / 153
页数:14
相关论文
共 50 条
  • [1] Temporal Dropout of Changes Approach to Convolutional Learning of Spatio-Temporal Features
    Culibrk, Dubravko
    Sebe, Nicu
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1201 - 1204
  • [2] Spatio-temporal convolutional features with nested LSTM for facial expression recognition
    Yu, Zhenbo
    Liu, Guangcan
    Liu, Qingshan
    Deng, Jiankang
    [J]. NEUROCOMPUTING, 2018, 317 : 50 - 57
  • [3] Spatio-Temporal Fusion based Convolutional Sequence Learning for Lip Reading
    Zhang, Xingxuan
    Cheng, Feng
    Wang, Shilin
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 713 - 722
  • [4] Learning Bag of Spatio-Temporal Features for Human Interaction Recognition
    Slimani, Khadidja Nour El Houda
    Benezeth, Yannick
    Souami, Feryel
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [5] Accelerated Learning of Discriminative Spatio-temporal Features for Action Recognition
    Varshney, Munender
    Rameshan, Renu
    [J]. 2016 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2016,
  • [6] Graph signal reconstruction based on spatio-temporal features learning
    Yang, Jie
    Shi, Ce
    Chu, Yueyan
    Guo, Wenbin
    [J]. DIGITAL SIGNAL PROCESSING, 2024, 148
  • [7] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    [J]. 51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12
  • [8] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    [J]. PERCEPTION, 2012, 41 : 58 - 58
  • [9] Continual spatio-temporal graph convolutional networks
    Hedegaard, Lukas
    Heidari, Negar
    Iosifidis, Alexandros
    [J]. PATTERN RECOGNITION, 2023, 140
  • [10] Spatio-Temporal Good Features to Track
    Feichtenhofer, Christoph
    Pinz, Axel
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 246 - 253