On Robustness for Spatio-Temporal Data

被引:2
|
作者
Garcia-Perez, Alfonso [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Dept Estadist, IO & CN, Madrid 28040, Spain
关键词
robust statistics; spatio-temporal outliers; von Mises expansions; saddlepoint approximations; APPROXIMATIONS;
D O I
10.3390/math10101785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spatio-temporal variogram is an important factor in spatio-temporal prediction through kriging, especially in fields such as environmental sustainability or climate change, where spatio-temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We approach this problem in two ways in the paper. First, new robust spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an original data transformation. Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce reliable approximations for the sample distribution of these new estimators. In addition, we define and study a new class of M-estimators in this paper, including real-world applications, in order to determine whether there are any significant differences in the spatio-temporal variogram between two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-temporal analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [2] Spatio-temporal networks: reachability, centrality and robustness
    Williams, Matthew J.
    Musolesi, Mirco
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (06):
  • [3] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [4] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [5] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [6] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [7] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [8] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [9] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [10] WORKING WITH SPATIO-TEMPORAL DATA TYPE
    Raza, Ale
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION II, 2012, 39-B2 : 5 - 10