On Robustness for Spatio-Temporal Data

被引:2
|
作者
Garcia-Perez, Alfonso [1 ]
机构
[1] Univ Nacl Educ Distancia UNED, Dept Estadist, IO & CN, Madrid 28040, Spain
关键词
robust statistics; spatio-temporal outliers; von Mises expansions; saddlepoint approximations; APPROXIMATIONS;
D O I
10.3390/math10101785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spatio-temporal variogram is an important factor in spatio-temporal prediction through kriging, especially in fields such as environmental sustainability or climate change, where spatio-temporal data analysis is based on this concept. However, the traditional spatio-temporal variogram estimator, which is commonly employed for these purposes, is extremely sensitive to outliers. We approach this problem in two ways in the paper. First, new robust spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an original data transformation. Second, we compare the classical estimate against a robust one, identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-contaminated normal model to produce reliable approximations for the sample distribution of these new estimators. In addition, we define and study a new class of M-estimators in this paper, including real-world applications, in order to determine whether there are any significant differences in the spatio-temporal variogram between two temporal lags and, if so, whether we can reduce the number of lags considered in the spatio-temporal analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    [J]. MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198
  • [42] CurrentClean: Spatio-temporal Cleaning of Stale Data
    Milani, Mostafa
    Zheng, Zheng
    Chiang, Fei
    [J]. 2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 172 - 183
  • [43] Blind separation of spatio-temporal data sources
    Unger, H
    Zeevi, YY
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 962 - 969
  • [44] Managing Uncertainty in Spatial and Spatio-temporal Data
    Cheng, Reynold
    Emrich, Tobias
    Kriegel, Hans-Peter
    Mamoulis, Nikos
    Renz, Matthias
    Trajcevski, Goce
    Zuefle, Andreas
    [J]. 2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 1302 - 1305
  • [45] Visualization of Spatio-temporal Data of Bus Trips
    Hong Thi Nguyen
    Chi Kim Thi Duong
    Tha Thi Bui
    Phuoc Vinh Tran
    [J]. 2012 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2012, : 392 - 397
  • [46] Outlier highlighting for spatio-temporal data visualization
    Pyysalo, Ulla
    Oksanen, Juha
    [J]. CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2013, 40 (03) : 165 - 171
  • [47] SPATIO-TEMPORAL CROP CLASSIFICATION ON VOLUMETRIC DATA
    Qadeer, Muhammad Usman
    Saeed, Salar
    Taj, Murtaza
    Muhammad, Abubakr
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3812 - 3816
  • [48] Exploratory spatio-temporal data mining and visualization
    Compieta, P.
    Di Martino, S.
    Bertolotto, M.
    Ferrucci, F.
    Kechadi, T.
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2007, 18 (03): : 255 - 279
  • [49] Review of Spatio-temporal Data Modeling Methods
    Li, Xuhui
    Liu, Yang
    [J]. Data Analysis and Knowledge Discovery, 2019, 3 (03) : 1 - 13
  • [50] Editorial: Spatio-Temporal Data Models and Languages
    Stefano Spaccapietra
    [J]. GeoInformatica, 2001, 5 : 5 - 9