SPATIO-TEMPORAL CROP CLASSIFICATION ON VOLUMETRIC DATA

被引:1
|
作者
Qadeer, Muhammad Usman [1 ]
Saeed, Salar [1 ]
Taj, Murtaza [1 ]
Muhammad, Abubakr [1 ]
机构
[1] Lahore Univ Management Sci, Lahore, Pakistan
关键词
Satellite data; CNN; Crop Classification; LAND-COVER; PERFORMANCE;
D O I
10.1109/ICIP42928.2021.9506046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-area crop classification using multi-spectral imagery is a widely studied problem for several decades and is generally addressed using classical Random Forest classifier. Recently, deep convolutional neural networks (DCNN) have been proposed. However, these methods only achieved results comparable with Random Forest. In this work, we present a novel CNN based architecture for large-area crop classification. Our methodology combines both spatio-temporal analysis via 3D CNN as well as temporal analysis via 1D CNN. We evaluated the efficacy of our approach on Yolo and Imperial county benchmark datasets. Our combined strategy outperforms both classical as well as recent DCNN based methods in terms of classification accuracy by 2% while maintaining a minimum number of parameters and the lowest inference time.
引用
收藏
页码:3812 / 3816
页数:5
相关论文
共 50 条
  • [1] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [2] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [3] Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape
    Pitarch, Yoann
    Ienco, Dino
    Vintrou, Elodie
    Begue, Agnes
    Laurent, Anne
    Poncelet, Pascal
    Sala, Michel
    Teisseire, Maguelonne
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 37 : 91 - 102
  • [4] Classification of Gaussian spatio-temporal data with stationary separable covariances
    Karaliute, Marta
    Ducinskas, Kestutis
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (02): : 363 - 374
  • [5] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [6] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [7] Spatio-temporal model for crop yield forecasting
    Saengseedam, Panudet
    Kantanantha, Nantachai
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (03) : 427 - 440
  • [8] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [9] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [10] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)