Classification of Gaussian spatio-temporal data with stationary separable covariances

被引:1
|
作者
Karaliute, Marta [1 ]
Ducinskas, Kestutis [1 ,2 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad Str 4, LT-08412 Vilnius, Lithuania
[2] Klaipeda Univ, Fac Marine Technol & Nat Sci, Herkaus Manto Str 84, LT-92294 Klaipeda, Lithuania
来源
关键词
separable covariance function; Bayes discriminant function; powered-exponential family; LINEAR DISCRIMINANT-ANALYSIS; MODELS; PREDICTION; SPACE;
D O I
10.15388/namc.2021.26.22359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The novel approach to classification of spatio-temporal data based on Bayes discriminant functions is developed. We focus on the problem of supervised classifying of the spatiotemporal Gaussian random field (GRF) observation into one of two classes specified by different drift parameters, separable nonlinear covariance functions and nonstationary label field. The performance of proposed classification rule is validated by the values of local Bayes and empirical error rates realized by leave one out procedure. A simulation study for spatial covariance functions belonging to powered-exponential family and temporal covariance functions of AR(1) models is carried out. The influence of the values of spatial and temporal covariance parameters to error rates for several label field models are studied. The results showed that the proposed classification methodology can be applied successfully in practice with small error rates and can be a useful tool for discriminant analysis of spatio-temporal data.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 50 条
  • [1] Modelling Non-stationary and Non-separable Spatio-Temporal Changes in Neurodegeneration via Gaussian Process Convolution
    Lorenzi, Marco
    Ziegler, Gabriel
    Alexander, Daniel C.
    Ourselin, Sebastien
    [J]. MACHINE LEARNING MEETS MEDICAL IMAGING, 2015, 9487 : 35 - 44
  • [2] A New Non-Separable Kernel for Spatio-Temporal Gaussian Process Regression
    Gallagher, Sean
    Quinn, Anthony
    [J]. 2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [3] SPATIO-TEMPORAL CROP CLASSIFICATION ON VOLUMETRIC DATA
    Qadeer, Muhammad Usman
    Saeed, Salar
    Taj, Murtaza
    Muhammad, Abubakr
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3812 - 3816
  • [4] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    [J]. SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [5] The wrapped skew Gaussian process for analyzing spatio-temporal data
    Mastrantonio, Gianluca
    Gelfand, Alan E.
    Lasinio, Giovanna Jona
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (08) : 2231 - 2242
  • [6] The wrapped skew Gaussian process for analyzing spatio-temporal data
    Gianluca Mastrantonio
    Alan E. Gelfand
    Giovanna Jona Lasinio
    [J]. Stochastic Environmental Research and Risk Assessment, 2016, 30 : 2231 - 2242
  • [7] Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification
    Soh, Harold
    Su, Yanyu
    Demiris, Yiannis
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 4489 - 4496
  • [8] Locally stationary spatio-temporal processes
    Matsuda, Yasumasa
    Yajima, Yoshihiro
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (01) : 41 - 57
  • [9] Spatio-temporal stationary covariance models
    Ma, CS
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 97 - 107
  • [10] Locally stationary spatio-temporal processes
    Yasumasa Matsuda
    Yoshihiro Yajima
    [J]. Japanese Journal of Statistics and Data Science, 2018, 1 (1) : 41 - 57