Classification of Gaussian spatio-temporal data with stationary separable covariances

被引:1
|
作者
Karaliute, Marta [1 ]
Ducinskas, Kestutis [1 ,2 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad Str 4, LT-08412 Vilnius, Lithuania
[2] Klaipeda Univ, Fac Marine Technol & Nat Sci, Herkaus Manto Str 84, LT-92294 Klaipeda, Lithuania
来源
关键词
separable covariance function; Bayes discriminant function; powered-exponential family; LINEAR DISCRIMINANT-ANALYSIS; MODELS; PREDICTION; SPACE;
D O I
10.15388/namc.2021.26.22359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The novel approach to classification of spatio-temporal data based on Bayes discriminant functions is developed. We focus on the problem of supervised classifying of the spatiotemporal Gaussian random field (GRF) observation into one of two classes specified by different drift parameters, separable nonlinear covariance functions and nonstationary label field. The performance of proposed classification rule is validated by the values of local Bayes and empirical error rates realized by leave one out procedure. A simulation study for spatial covariance functions belonging to powered-exponential family and temporal covariance functions of AR(1) models is carried out. The influence of the values of spatial and temporal covariance parameters to error rates for several label field models are studied. The results showed that the proposed classification methodology can be applied successfully in practice with small error rates and can be a useful tool for discriminant analysis of spatio-temporal data.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 50 条
  • [31] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [32] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [33] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [34] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [35] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [36] A Spatio-Temporal Approach for Apathy Classification
    Das, Abhijit
    Niu, Xuesong
    Dantcheva, Antitza
    Happy, S. L.
    Han, Hu
    Zeghari, Radia
    Robert, Philippe
    Shan, Shiguang
    Bremond, Francois
    Chen, Xilin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2561 - 2573
  • [37] Spatio-temporal classification for polyp diagnosis
    Puyal, Juana Gonzalez-Bueno
    Brandao, Patrick
    Ahmad, Omer F.
    Bhatia, Kanwal K.
    Toth, Daniel
    Kader, Rawen
    Lovat, Laurence
    Mountney, Peter
    Stoyanov, Danail
    [J]. BIOMEDICAL OPTICS EXPRESS, 2023, 14 (02) : 593 - 607
  • [38] Dynamic Gaussian process regression for spatio-temporal data based on local clustering
    WANG, Binglin
    YAN, Liang
    RONG, Qi
    CHEN, Jiangtao
    SHEN, Pengfei
    DUAN, Xiaojun
    [J]. Chinese Journal of Aeronautics, 2024, 37 (12) : 245 - 257
  • [39] Gaussian processes on the support of cylindrical surfaces, with application to periodic spatio-temporal data
    Majumdar, Anandamayee
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 153 : 27 - 41
  • [40] Dynamic Gaussian process regression for spatio-temporal data based on local clustering
    Binglin WANG
    Liang YAN
    Qi RONG
    Jiangtao CHEN
    Pengfei SHEN
    Xiaojun DUAN
    [J]. Chinese Journal of Aeronautics, 2024, 37 (12) - 257