Spatio-Temporal GRU for Trajectory Classification

被引:24
|
作者
Liu, Hong-Bin [1 ]
Wu, Hao [2 ,3 ]
Sun, Weiwei [2 ]
Lee, Ickjai [1 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld, Australia
[2] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[3] Bytedance AI Lab, Beijing, Peoples R China
关键词
trajectory classification; spatio-temporal trajectory; GRU; travel model classification; deep learning;
D O I
10.1109/ICDM.2019.00152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatio-temporal trajectory classification is a fundamental problem for location-based services with many real-world applications such as travel mode classification, animal mobility detection, and location recommendation. In the literature, many approaches have been proposed to solve this classification task including deep learning models like LSTM recently for sequence classification. However, these approaches fail to consider both spatial and temporal interval information simultaneously, but share some common drawbacks: omitting either the spatial information or the temporal interval information out. Some models like Time-LSTM, have been proposed to handle the temporal interval information for spatio-temporal trajectories, but they do not take into account the spatial information. Note that, considering both spatial and temporal interval information is crucial for spatio-temporal data mining in order not to miss any spatio-temporal pattern. In this study, we propose a trajectory classifier called Spatio-Temporal GRU to better model the spatio-temporal correlations and irregular temporal intervals prevalently present in spatio-temporal trajectories. We introduce a novel segmented convolutional weight mechanism to capture short-term local spatial correlations in trajectories and propose an additional temporal gate to control the information flow related to the temporal interval information. Performance evaluation demonstrates that our proposed model outperforms popular deep learning approaches for the travel model classification problem.
引用
收藏
页码:1228 / 1233
页数:6
相关论文
共 50 条
  • [1] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [2] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    [J]. JOURNAL OF LOCATION BASED SERVICES, 2024, : 302 - 333
  • [3] Motor Imagery Classification Based on CNN-GRU Network with Spatio-Temporal Feature Representation
    Bang, Ji-Seon
    Lee, Seong-Whan
    [J]. PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 104 - 115
  • [4] SaveDat: Spatio-Temporal Trajectory Compression by LSTM
    Horovitz, Shay
    Cohen, Guy Yosef
    Shmirer, Dan
    Boxer, Shir
    Blumenkrantz, Itai
    Lasry, Mike
    [J]. 2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 442 - 450
  • [5] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [6] Trajectory Compression with Spatio-Temporal Semantic Constraints
    Zhou, Yan
    Zhang, Yunhan
    Zhang, Fangfang
    Zhang, Yeting
    Wang, Xiaodi
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)
  • [7] Spatio-temporal aggregations in trajectory Data Warehouses
    Orlando, S.
    Orsini, R.
    Raffaeta, A.
    Roncato, A.
    Silvestri, C.
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 66 - +
  • [8] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [9] A framework of spatio-temporal trajectory simplification methods
    Bermingham, Luke
    Lee, Ickjai
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1128 - 1153
  • [10] A Spatio-Temporal Approach for Apathy Classification
    Das, Abhijit
    Niu, Xuesong
    Dantcheva, Antitza
    Happy, S. L.
    Han, Hu
    Zeghari, Radia
    Robert, Philippe
    Shan, Shiguang
    Bremond, Francois
    Chen, Xilin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2561 - 2573