Mining Spatio-Temporal Patterns in Trajectory Data

被引:25
|
作者
Kang, Juyoung [1 ]
Yong, Hwan-Seung [1 ]
机构
[1] Ewha Womans Univ, Dept Comp Sci & Engn, Comp Sci & Engn, Seoul, South Korea
来源
关键词
Data Mining; Spatio-Temporal Data Mining; Trajectory Data; Frequent Spatio-Temporal Patterns;
D O I
10.3745/JIPS.2010.6.4.521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [1] SPATIO-TEMPORAL PATTERN MINING ON TRAJECTORY DATA USING ARM
    Khoshahval, S.
    Farnaghi, M.
    Taleai, M.
    [J]. ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 395 - 399
  • [2] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [3] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [4] Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data
    Wu, Guojun
    Ding, Yichen
    Li, Yanhua
    Bao, Jie
    Zheng, Yu
    Luo, Jun
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1283 - 1294
  • [5] Mining generalized spatio-temporal patterns
    Wang, JM
    Hsu, WN
    Lee, ML
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2005, 3453 : 649 - 661
  • [6] A survey on spatio-temporal data mining
    Vasavi, M.
    Murugan, A.
    [J]. Materials Today: Proceedings, 2023, 80 : 2769 - 2772
  • [7] Software for spatio-temporal trajectory analysis and pattern mining
    Sidorova, Marina
    Pidhornyi, Pavlo
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET), 2018, : 958 - 961
  • [8] Mining Spatio-Temporal Semantic Trajectory for Groups Identification
    Cao, Yang
    Si, Yunfei
    Cai, Zhi
    Ding, Zhiming
    [J]. 2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2018, : 308 - 313
  • [9] Mining frequent spatio-temporal sequential patterns
    Cao, HP
    Mamoulis, N
    Cheung, DW
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 82 - 89
  • [10] Spatio-temporal aggregations in trajectory Data Warehouses
    Orlando, S.
    Orsini, R.
    Raffaeta, A.
    Roncato, A.
    Silvestri, C.
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 66 - +