Mining Spatio-Temporal Patterns in Trajectory Data

被引:25
|
作者
Kang, Juyoung [1 ]
Yong, Hwan-Seung [1 ]
机构
[1] Ewha Womans Univ, Dept Comp Sci & Engn, Comp Sci & Engn, Seoul, South Korea
来源
关键词
Data Mining; Spatio-Temporal Data Mining; Trajectory Data; Frequent Spatio-Temporal Patterns;
D O I
10.3745/JIPS.2010.6.4.521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [21] Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 92 : 1 - 11
  • [22] A framework for mining sequential patterns from spatio-temporal event data sets
    Huang, Yan
    Zhang, Liqin
    Zhang, Pusheng
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (04) : 433 - 448
  • [23] Access patterns mining from massive spatio-temporal data in a smart city
    Lian Xiong
    Xiaojun Liu
    Daixin Guo
    Zhihua Hu
    [J]. Cluster Computing, 2019, 22 : 6031 - 6041
  • [24] Mining Spatio-temporal Patterns in the Presence of Concept Hierarchies
    Le Van Quoc Anh
    Gertz, Michael
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 765 - 772
  • [25] Mining spatio-temporal patterns in object mobility databases
    Florian Verhein
    Sanjay Chawla
    [J]. Data Mining and Knowledge Discovery, 2008, 16 : 5 - 38
  • [26] Mining spatio-temporal patterns in object mobility databases
    Verhein, Florian
    Chawla, Sanjay
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2008, 16 (01) : 5 - 38
  • [27] Mining Regular Crime Patterns in Spatio-Temporal Databases
    Kumar, G. Vijay
    Kumar, N. Dilip
    Sai, R. Lakshmi Prasanna
    [J]. 2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 1, 2017, : 231 - 236
  • [28] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [29] Calibrating trajectory data for spatio-temporal similarity analysis
    Su, Han
    Zheng, Kai
    Huang, Jiamin
    Wang, Haozhou
    Zhou, Xiaofang
    [J]. VLDB JOURNAL, 2015, 24 (01): : 93 - 116
  • [30] Calibrating trajectory data for spatio-temporal similarity analysis
    Han Su
    Kai Zheng
    Jiamin Huang
    Haozhou Wang
    Xiaofang Zhou
    [J]. The VLDB Journal, 2015, 24 : 93 - 116