Mining Spatio-Temporal Patterns in Trajectory Data

被引:25
|
作者
Kang, Juyoung [1 ]
Yong, Hwan-Seung [1 ]
机构
[1] Ewha Womans Univ, Dept Comp Sci & Engn, Comp Sci & Engn, Seoul, South Korea
来源
关键词
Data Mining; Spatio-Temporal Data Mining; Trajectory Data; Frequent Spatio-Temporal Patterns;
D O I
10.3745/JIPS.2010.6.4.521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 50 条
  • [41] Spatio-temporal Data Mining for Maritime Situational Awareness
    Arguedas, Virginia Fernandez
    Mazzarella, Fabio
    Vespe, Michele
    [J]. OCEANS 2015 - GENOVA, 2015,
  • [42] Spatio-Temporal Data Mining for Typhoon Image Collection
    Asanobu Kitamoto
    [J]. Journal of Intelligent Information Systems, 2002, 19 : 25 - 41
  • [43] Spatio-temporal data mining for typhoon image collection
    Kitamoto, A
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2002, 19 (01) : 25 - 41
  • [44] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700
  • [45] Pattern mining as abduction from snapshots to spatio-temporal patterns
    Hazarika, Shyamanta M.
    [J]. ADCOM 2007: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATIONS, 2007, : 289 - 294
  • [46] Cross-Correlation Measure for Mining Spatio-Temporal Patterns
    Ma, James
    Zeng, Daniel
    Zhao, Huimin
    Liu, Chunyang
    [J]. JOURNAL OF DATABASE MANAGEMENT, 2013, 24 (02) : 13 - 34
  • [47] Mining Frequent Spatio-Temporal Patterns in Wind Speed and Direction
    Yusof, Norhakim
    Zurita-Milla, Raul
    Kraak, Menno-Jan
    Retsios, Bas
    [J]. CONNECTING A DIGITAL EUROPE THROUGH LOCATION AND PLACE, 2014, : 143 - 161
  • [48] Mining Medical Periodic Patterns from Spatio-Temporal Trajectories
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    [J]. HEALTH INFORMATION SCIENCE (HIS 2018), 2018, 11148 : 123 - 133
  • [49] On Retrieving Moving Objects Gathering Patterns from Trajectory Data via Spatio-Temporal Graph
    Zhang, Junming
    Li, Jinglin
    Wang, Shangguang
    Liu, Zhihan
    Yuan, Quan
    Yang, Fangchun
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 390 - 397
  • [50] A trajectory data compression algorithm based on spatio-temporal characteristics
    Zhong, Yanling
    Kong, Jinling
    Zhang, Juqing
    Jiang, Yizhu
    Fan, Xiao
    Wang, Zhuoyue
    [J]. PeerJ Computer Science, 2022, 8