Spatio-Temporal Trajectory Models For Target Tracking

被引:0
|
作者
Fanaswala, Mustafa [1 ]
Krishnamurthy, Vikram [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
关键词
stochastic context-free grammars; spatio-temporal trajectory patterns; anomalous behavior; non-Markovian models; long-range dependency; RECOGNITION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents generalized models for characterizing spatio-temporal target trajectories that have anomalous patterns. Stochastic context-free grammars (SCFGs) are the modeling framework used to represent anomalous events like circling behaviors and destination-specific trajectories. We propose a hierarchical tracking architecture to ensure legacy compatibility with existing trackers. The behavior of targets on the slower time-scale is captured through both positional features as well as movement patterns. Numerical simulations show a significant performance increase in probability of detection over competing hidden Markov model methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Robust spatio-temporal context for infrared target tracking
    Cui, Zheng
    Yang, Jingli
    Jiang, Shouda
    Li, Junbao
    Gu, Yanfeng
    INFRARED PHYSICS & TECHNOLOGY, 2018, 91 : 263 - 277
  • [2] GRADUALLY SPATIO-TEMPORAL FEATURE ACTIVATION FOR TARGET TRACKING
    Deng, Yanfang
    Zhang, Canlong
    Li, Zhixin
    Wei, Chunrong
    Wang, Zhiwen
    Pan, Shuqi
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3925 - 3929
  • [3] Improved Spatio-temporal Context Target Tracking Algorithm
    Shi, Yuanhang
    Zang, Junwei
    Liu, Yuhuai
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND MECHANICAL ENGINEERING (EMIM 2017), 2017, 76 : 185 - 189
  • [4] Improved Target Tracking Based on Spatio-Temporal Learning
    Jia, Songmin
    Zeng, Dishi
    Xu, Tao
    Zhang, Hui
    Li, Xiuzhi
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1840 - 1845
  • [5] Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics
    Lu, Xinyi
    Kanno, Yoichiro
    Valentine, George P.
    Kulp, Matt A.
    Hooten, Mevin B.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [6] Latent trajectory models for spatio-temporal dynamics in Alaskan ecosystems
    Lu, Xinyi
    Hooten, Mevin B.
    Raiho, Ann M.
    Swanson, David K.
    Roland, Carl A.
    Stehn, Sarah E.
    BIOMETRICS, 2023, 79 (04) : 3664 - 3675
  • [7] Research on Target Tracking Algorithm Based on Spatio-Temporal Context
    Li, Baiping
    Xu, Sanmei
    Kang, Hongjuan
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [8] Spatio-temporal trajectory alignment for trajectory evaluation
    Tombrink, Gereon
    Dreier, Ansgar
    Klingbeil, Lasse
    Kuhlmann, Heiner
    JOURNAL OF APPLIED GEODESY, 2024,
  • [9] Airborne target tracking based on spatio-temporal saliency modeling
    Zhang W.
    Zhong S.
    Wang J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (03):
  • [10] DISTRIBUTED SPATIO-TEMPORAL MULTI-TARGET ASSOCIATION AND TRACKING
    Ren, Guohua
    Schizas, Ioannis D.
    Maroulas, Vasileios
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4010 - 4014