Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics

被引:0
|
作者
Lu, Xinyi [1 ,2 ,3 ]
Kanno, Yoichiro [3 ,4 ]
Valentine, George P. [3 ,4 ]
Kulp, Matt A. [5 ]
Hooten, Mevin B. [6 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Colorado State Univ, Colorado Cooperat Fish & Wildlife Res Unit, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
[5] Natl Pk Serv, Great Smoky Mt Natl Pk, Gatlinburg, TN 37738 USA
[6] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
关键词
Bayesian hierarchical model; State-space model; Functional analysis; Climate change refugia; Brook charr; TROUT SALVELINUS-FONTINALIS; BROOK TROUT; WATER TEMPERATURE; ECOLOGICAL MEMORY; CLIMATE-CHANGE; STREAM; RATES; PERSISTENCE; SELECTION; HABITAT;
D O I
10.1007/s13253-024-00616-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their "sensitive" or "resilient" states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (Salvelinus fontinalis) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Latent trajectory models for spatio-temporal dynamics in Alaskan ecosystems
    Lu, Xinyi
    Hooten, Mevin B.
    Raiho, Ann M.
    Swanson, David K.
    Roland, Carl A.
    Stehn, Sarah E.
    [J]. BIOMETRICS, 2023, 79 (04) : 3664 - 3675
  • [2] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [3] Spatio-temporal patterns in population dynamics
    La Barbera, A
    Spagnolo, B
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 120 - 124
  • [4] Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics Alignment with Diffusion Models
    Wang, Yule
    Wu, Zijing
    Li, Chengrui
    Wu, Anqi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    [J]. ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240
  • [6] Discovering Spatio-Temporal Latent Influence in Geographical Attention Dynamics
    Higuchi, Minoru
    Matsutani, Kanji
    Kumano, Masahito
    Kimura, Masahiro
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT II, 2019, 11052 : 517 - 534
  • [7] Spatio-temporal population dynamics of six phytoplankton taxa
    Louise Forsblom
    Sirpa Lehtinen
    Andreas Lindén
    [J]. Hydrobiologia, 2019, 828 : 301 - 314
  • [8] Spatio-temporal population dynamics of six phytoplankton taxa
    Forsblom, Louise
    Lehtinen, Sirpa
    Linden, Andreas
    [J]. HYDROBIOLOGIA, 2019, 828 (01) : 301 - 314
  • [9] Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
    Regazzoni, Francesco
    Pagani, Stefano
    Salvador, Matteo
    Dede, Luca
    Quarteroni, Alfio
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Regularized spatial and spatio-temporal cluster detection
    Kamenetsky, Maria E.
    Lee, Junho
    Zhu, Jun
    Gangnon, Ronald E.
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2022, 41