Regularized spatial and spatio-temporal cluster detection

被引:4
|
作者
Kamenetsky, Maria E. [1 ]
Lee, Junho [2 ]
Zhu, Jun [3 ]
Gangnon, Ronald E. [1 ,4 ]
机构
[1] Univ Wisconsin Madison, Dept Populat Hlth Sci, Madison, WI 53726 USA
[2] Baylor Univ, Dept Stat Sci, Waco, TX 76798 USA
[3] Univ Wisconsin Madison, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53726 USA
关键词
Lasso; Poisson regression; Spatial cluster detection; Spatio-temporal cluster detection; Spatial scan statistic; Quasi-likelihood; GENERALIZED LINEAR-MODELS; POST-SELECTION INFERENCE; SCAN; DISEASE; REGRESSION; SURVIVAL; LASSO;
D O I
10.1016/j.sste.2021.100462
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Spatial and spatio-temporal cluster detection are important tools in public health and many other areas of application. Cluster detection can be approached as a multiple testing problem, typically using a space and time scan statistic. We recast the spatial and spatio-temporal cluster detection problem in a high-dimensional data analytical framework with Poisson or quasi-Poisson regression with the Lasso penalty. We adopt a fast and computationally-efficient method using a novel sparse matrix representation of the effects of potential clusters. The number of clusters and tuning parameters are selected based on (quasi-)information criteria. We evaluate the performance of our proposed method including the false positive detection rate and power using a simulation study. Application of the method is illustrated using breast cancer incidence data from three prefectures in Japan.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Gonorrhea cluster detection in Manitoba, Canada: Spatial, temporal, and spatio-temporal analysis
    Abed, Amin
    Torabi, Mahmoud
    Mashreghi, Zeinab
    [J]. INFECTIOUS DISEASE MODELLING, 2024, 9 (04) : 1045 - 1056
  • [2] Regularized Feature Reconstruction for Spatio-temporal Saliency Detection
    Ren, Zhixiang
    Gao, Shenghua
    Chia, Liang-Tien
    Rajan, Deepu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3120 - 3132
  • [3] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [4] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Johan Lindström
    Adam A. Szpiro
    Paul D. Sampson
    Assaf P. Oron
    Mark Richards
    Tim V. Larson
    Lianne Sheppard
    [J]. Environmental and Ecological Statistics, 2014, 21 : 411 - 433
  • [5] Spatio-Temporal Activity Detection via Joint Optimization of Spatial and Temporal Localization
    Rahman, Md Atiqur
    Laganiere, Robert
    [J]. 2024 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS, WACVW 2024, 2024, : 242 - 250
  • [6] Spatio-Temporal Parsing in Spatial Hypermedia
    Schedel, Thomas
    Atzenbeck, Claus
    [J]. PROCEEDINGS OF THE 27TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT'16), 2016, : 149 - 157
  • [7] GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data
    Nonato, Luis Gustavo
    do Carmo, Fabiano Petronetto
    Silva, Claudio T.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (08) : 3481 - 3492
  • [8] A cluster approach to spatio-temporal channel estimation
    Nilsson, M
    Völcker, B
    Ottersten, B
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 2757 - 2760
  • [9] Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy
    Marchione, Elio
    Johnson, Shane D.
    [J]. JOURNAL OF RESEARCH IN CRIME AND DELINQUENCY, 2013, 50 (04): : 504 - 524
  • [10] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991