Latent trajectory models for spatio-temporal dynamics in Alaskan ecosystems

被引:4
|
作者
Lu, Xinyi [1 ,8 ]
Hooten, Mevin B. [2 ]
Raiho, Ann M. [3 ,4 ]
Swanson, David K. [5 ]
Roland, Carl A. [6 ,7 ]
Stehn, Sarah E. [6 ,7 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO USA
[2] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[5] Natl Pk Serv, Fairbanks, AK USA
[6] Denali Natl Pk & Preserve, Denali Natl Pk, AK USA
[7] Cent Alaska Network Inventory & Monitoring Program, Fairbanks, AK USA
[8] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Bayesian; climate change; data augmentation; ecological succession; state-space models; BINARY; INFERENCE; TUNDRA; TOOL;
D O I
10.1111/biom.13832
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Polya-Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.
引用
收藏
页码:3664 / 3675
页数:12
相关论文
共 50 条
  • [1] Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics
    Lu, Xinyi
    Kanno, Yoichiro
    Valentine, George P.
    Kulp, Matt A.
    Hooten, Mevin B.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [2] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [3] Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics Alignment with Diffusion Models
    Wang, Yule
    Wu, Zijing
    Li, Chengrui
    Wu, Anqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240
  • [5] Discovering Spatio-Temporal Latent Influence in Geographical Attention Dynamics
    Higuchi, Minoru
    Matsutani, Kanji
    Kumano, Masahito
    Kimura, Masahiro
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT II, 2019, 11052 : 517 - 534
  • [6] Spatio-temporal trajectory alignment for trajectory evaluation
    Tombrink, Gereon
    Dreier, Ansgar
    Klingbeil, Lasse
    Kuhlmann, Heiner
    JOURNAL OF APPLIED GEODESY, 2024,
  • [7] Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
    Regazzoni, Francesco
    Pagani, Stefano
    Salvador, Matteo
    Dede, Luca
    Quarteroni, Alfio
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [9] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    JOURNAL OF LOCATION BASED SERVICES, 2024, 18 (03) : 302 - 333
  • [10] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    JOURNAL OF LOCATION BASED SERVICES, 2024, 18 (03) : 302 - 333