Challenges of spatio-temporal trajectory datasets

被引:0
|
作者
Arslan, Muhammad [1 ]
Cruz, Christophe [1 ]
机构
[1] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne ICB, Dijon, France
关键词
Data ethics; focus group study; privacy concerns; spatio-temporal datasets;
D O I
10.1080/17489725.2024.2371311
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The rapid evolution of wireless location technologies has significantly increased the availability of mobility data, particularly spatio-temporal trajectory data, detailing object movements and locations over time. This data holds diverse applications such as predicting travel patterns, optimizing routes, analysing social interactions, and managing urban resources. However, leveraging trajectory datasets presents challenges, including data heterogeneity, volume, velocity requiring real-time processing, privacy concerns with sensitive information, and regulatory compliance. Traditional systematic reviews of literature may not fully capture industry challenges, as professionals often do not publish research. To address this gap, industry expert input is vital. Collaborating with academia, we propose using focus group discussions to explore these challenges comprehensively. Focus groups offer a qualitative platform for professionals and academics to identify practical issues and gaps in the literature. This combined approach will inform technological advancements in creating and utilizing spatio-temporal datasets. Additionally, integrating insights from focus groups with a literature review ensures a thorough analysis of data challenges. This methodology aims to provide a holistic understanding and foster innovation in managing and exploiting trajectory data effectively.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] A Framework for Local Outlier Detection from Spatio-Temporal Trajectory Datasets
    Cai, Xumin
    Aydin, Berkay
    Ji, Anli
    Angryk, Rafal
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5682 - 5689
  • [2] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [3] SaveDat: Spatio-Temporal Trajectory Compression by LSTM
    Horovitz, Shay
    Cohen, Guy Yosef
    Shmirer, Dan
    Boxer, Shir
    Blumenkrantz, Itai
    Lasry, Mike
    [J]. 2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 442 - 450
  • [4] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [5] Spatio-temporal aggregations in trajectory Data Warehouses
    Orlando, S.
    Orsini, R.
    Raffaeta, A.
    Roncato, A.
    Silvestri, C.
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 66 - +
  • [6] A framework of spatio-temporal trajectory simplification methods
    Bermingham, Luke
    Lee, Ickjai
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (06) : 1128 - 1153
  • [7] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [8] Trajectory Compression with Spatio-Temporal Semantic Constraints
    Zhou, Yan
    Zhang, Yunhan
    Zhang, Fangfang
    Zhang, Yeting
    Wang, Xiaodi
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)
  • [9] Towards a framework for mining and analysing spatio-temporal datasets
    Bertolotto, M.
    Di Martino, S.
    Ferrucci, F.
    Kechadi, T.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2007, 21 (08) : 895 - 906
  • [10] Data Reduction in Very Large Spatio-Temporal Datasets
    Whelan, Michael
    Nhien An Le Khac
    Kechadi, M-Tahar
    [J]. 19TH IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2010), 2010, : 104 - 109