Latent trajectory models for spatio-temporal dynamics in Alaskan ecosystems

被引:4
|
作者
Lu, Xinyi [1 ,8 ]
Hooten, Mevin B. [2 ]
Raiho, Ann M. [3 ,4 ]
Swanson, David K. [5 ]
Roland, Carl A. [6 ,7 ]
Stehn, Sarah E. [6 ,7 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO USA
[2] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[5] Natl Pk Serv, Fairbanks, AK USA
[6] Denali Natl Pk & Preserve, Denali Natl Pk, AK USA
[7] Cent Alaska Network Inventory & Monitoring Program, Fairbanks, AK USA
[8] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Bayesian; climate change; data augmentation; ecological succession; state-space models; BINARY; INFERENCE; TUNDRA; TOOL;
D O I
10.1111/biom.13832
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Polya-Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.
引用
收藏
页码:3664 / 3675
页数:12
相关论文
共 50 条
  • [41] Nonlinear spatio-temporal dynamics in semiconductors
    Schöll, E
    BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (04) : 627 - 638
  • [42] Superbinding:: Spatio-temporal oscillatory dynamics
    Basar, E
    Özgören, M
    Basar-Eroglu, C
    Karakas, S
    THEORY IN BIOSCIENCES, 2003, 121 (04) : 371 - 386
  • [43] Spatio-temporal Evolution as Bigraph Dynamics
    Stell, John
    Del Mondo, Geraldine
    Thibaud, Remy
    Claramunt, Christophe
    SPATIAL INFORMATION THEORY, 2011, 6899 : 148 - +
  • [44] Spatio-temporal patterns in population dynamics
    La Barbera, A
    Spagnolo, B
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 120 - 124
  • [45] Spatio-temporal dynamics of face perception
    Muukkonen, I
    Olander, K.
    Numminen, J.
    Salmela, V. R.
    NEUROIMAGE, 2020, 209
  • [46] Models and queries in a spatio-temporal GIS
    El-Geresy, B
    Jones, C
    INNOVATIONS IN GIS: GIS AND GEOCOMPUTATION, 2000, 7 : 27 - 39
  • [47] Reduced Rank Spatio-Temporal Models
    Pu, Dan
    Fang, Kuangnan
    Lan, Wei
    Yu, Jihai
    Zhang, Qingzhao
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2025, 43 (01) : 98 - 109
  • [48] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409
  • [49] Spatio-temporal stationary covariance models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 97 - 107
  • [50] Spatio-temporal variograms and covariance models
    Ma, CS
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (03) : 706 - 725