Spatio-temporal expectile regression models

被引:3
|
作者
Spiegel, Elmar [1 ,2 ]
Kneib, Thomas [1 ]
Otto-Sobotka, Fabian [3 ]
机构
[1] Univ Gottingen, Chair Stat, Humboldtallee 3, D-37073 Gottingen, Germany
[2] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, Neuherberg, Germany
[3] Carl von Ossietzky Univ Oldenburg, Dept Hlth Serv Res, Oldenburg, Germany
关键词
expectile regression; interaction terms; main effects; tensor product; P-spline; spatio; temporal model; GENERALIZED ADDITIVE-MODELS; CONFIDENCE-INTERVALS; LINEAR-MODELS; SCALE; LOCATION; SPLINES;
D O I
10.1177/1471082X19829945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually rely on the assumption of a specific parametric distribution for the response and/or homoscedastic error terms. In this article, we propose to apply semiparametric expectile regression to model spatio-temporal effects beyond the mean. Besides the removal of the assumption of a specific distribution and homoscedasticity, with expectile regression the whole distribution of the response can be estimated. For the use of expectiles, we interpret them as weighted means and estimate them by established tools of (penalized) least squares regression. The spatio-temporal effect is set up as an interaction between time and space either based on trivariate tensor product P-splines or the tensor product of a Gaussian Markov random field and a univariate P-spline. Importantly, the model can easily be split up into main effects and interactions to facilitate interpretation. The method is presented along the analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.
引用
收藏
页码:386 / 409
页数:24
相关论文
共 50 条
  • [1] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [2] Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics
    Hoehle, Michael
    [J]. BIOMETRICAL JOURNAL, 2009, 51 (06) : 961 - 978
  • [3] Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
    Hashemi, Ali
    Gao, Yijing
    Cai, Chang
    Ghosh, Sanjay
    Mueller, Klaus-Robert
    Nagarajan, Srikantan S.
    Haufe, Stefan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [5] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    [J]. SORT, 2011, 35 (02): : 165 - 178
  • [6] Performance assessment of spatio-temporal regression kriging with GAMLSS models as trends
    De Medeiros, Elias S.
    De Lima, Renato R.
    De Olinda, Ricardo A.
    Dantas, Leydson G.
    Dos Santos, Carlos A. C.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2022, 94
  • [7] Spatio-temporal ecological models
    Chen, Qiuwen
    Han, Rui
    Ye, Fei
    Li, Weifeng
    [J]. ECOLOGICAL INFORMATICS, 2011, 6 (01) : 37 - 43
  • [8] Spatio-temporal functional regression on paleoecological data
    Bar-Hen, Avner
    Bel, Liliane
    Cheddadi, Rachid
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 53 - +
  • [9] Spatio-temporal functional regression on paleoecological data
    Bel, Liliane
    Bar-Hen, Avner
    Petit, Remy
    Cheddadi, Rachid
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (04) : 695 - 704
  • [10] Reduced Rank Spatio-Temporal Models
    Pu, Dan
    Fang, Kuangnan
    Lan, Wei
    Yu, Jihai
    Zhang, Qingzhao
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024,