Performance assessment of spatio-temporal regression kriging with GAMLSS models as trends

被引:1
|
作者
De Medeiros, Elias S. [1 ]
De Lima, Renato R. [2 ]
De Olinda, Ricardo A. [3 ]
Dantas, Leydson G. [4 ]
Dos Santos, Carlos A. C. [4 ]
机构
[1] Fundacao Univ Fed Grande Dourados, Fac Ciencias Exatas & Tecnol, Rodovia Dourados Itahum,Km 12,Caixa Postal 364, BR-79804970 Dourados, MS, Brazil
[2] Univ Fed Lavras, Dept Estat, Rotatoria Prof Edmir Sa Santos S-N,Campus Univ, BR-37200900 Lavras, MG, Brazil
[3] Univ Estadual Paraiba, Dept Estat, Rua Baraunas 351, BR-58429500 Campina Grande, PB, Brazil
[4] Univ Fed Campina Grande, Ctr Tecnol & Recursos Nat, Rua Aprigio Veloso 882, BR-58428830 Campina Grande, PB, Brazil
关键词
Brazil; GAMLSS regression; geostatistics; rainfall; FRANCISCO RIVER-BASIN; CLIMATE-CHANGE; INTERPOLATION; PRECIPITATION;
D O I
10.1590/0001-3765202220211241
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main objective of this study is to propose different probabilistic models for adjusting the trend component, since it significantly influences the quality of the spatiotemporal interpolation of rainfalls. We used the monthly total precipitation data of the Sao Francisco River Basin (SFRB) for the period of 31 years, 1989-2019. The SFRB occupies 8% of the whole Brazilian territory, mostly located in the Northeast Brazilian region. For the trend component, we propose the fitted GAMLSS models by comparing different probability distribution families, which in most cases include the characteristics of these data. The results indicate the existence of a spatio-temporal pattern of the residues obtained from the adjustment of the trend with zero adjusted Gamma distribution for the accumulated monthly precipitation. The adjustment revealed a spatial dependence of up to 873 km between the pluviometric stations and temporal autocorrelation of approximately 1.6 months. The methodology used in this study enabled us to create rainfall maps, interpolating unobserved locations in differences years. The projection of these maps to the SFRB is considered extremely important for planning and implementing activities related to water resources across the river basin.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    [J]. STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409
  • [2] Statistical assessment of spatio-temporal pollutant trends and meteorological transport models
    Haas, TC
    [J]. ATMOSPHERIC ENVIRONMENT, 1998, 32 (11) : 1865 - 1879
  • [3] Spatio-temporal regression kriging model of mean daily temperature for Croatia
    Sekulic, Aleksandar
    Kilibarda, Milan
    Protic, Dragutin
    Tadic, Melita Percec
    Bajat, Branislav
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2020, 140 (1-2) : 101 - 114
  • [4] Spatio-temporal regression kriging for modelling urban NO2 concentrations
    van Zoest, Vera
    Osei, Frank B.
    Hoek, Gerard
    Stein, Alfred
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (05) : 851 - 865
  • [5] Spatio-temporal regression kriging model of mean daily temperature for Croatia
    Aleksandar Sekulić
    Milan Kilibarda
    Dragutin Protić
    Melita Perčec Tadić
    Branislav Bajat
    [J]. Theoretical and Applied Climatology, 2020, 140 : 101 - 114
  • [6] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [7] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [8] Spatio-temporal kriging of soil water content
    Heuvelink, GBM
    Musters, P
    Pebesma, EJ
    [J]. GEOSTATISTICS WOLLONGONG '96, VOLS 1 AND 2, 1997, 8 (1-2): : 1020 - 1030
  • [9] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [10] Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics
    Hoehle, Michael
    [J]. BIOMETRICAL JOURNAL, 2009, 51 (06) : 961 - 978