Statistical assessment of spatio-temporal pollutant trends and meteorological transport models

被引:26
|
作者
Haas, TC [1 ]
机构
[1] Univ Wisconsin, Sch Business Adm, Milwaukee, WI 53201 USA
关键词
sulfate deposition; local regression; kriging; Monte-Carlo hypothesis testing;
D O I
10.1016/S1352-2310(97)00418-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Up to now, modeling and computational difficulties have impeded efforts toward a formal statistical assessment of large-scale, spatio-temporal pollutant trends and the predictive performance of meteorological pollutant transport and deposition models. Until such statistical assessments can be made however, environmental regulators may not always be able to defend regulatory decisions, and modelers may not always be able to give convincing evidence of a proposed model's predictive validity. This article gives a two-stage statistical method that allows such hypothesis testing and model assessment using data observed irregularly through space and time. Stage 1 is to estimate the global covariance matrix of the ra?dom disturbances of a pollutant deposition process and, using this global covariance matrix, stage 2 is to conduct a Monte-Carlo hypothesis test of either a pollutant trend hypothesis or goodness-of-fit of a meteorological pollutant transport and deposition model. This statistical method is described and demonstrated using conterminous U.S, wet sulfate deposition data. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1865 / 1879
页数:15
相关论文
共 50 条
  • [1] Performance assessment of spatio-temporal regression kriging with GAMLSS models as trends
    De Medeiros, Elias S.
    De Lima, Renato R.
    De Olinda, Ricardo A.
    Dantas, Leydson G.
    Dos Santos, Carlos A. C.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2022, 94
  • [2] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [3] Source reconstruction for spatio-temporal physical statistical models
    Okasaki, Connie
    Hooten, Mevin B.
    Berdahl, Andrew M.
    [J]. SPATIAL STATISTICS, 2022, 52
  • [4] Spatio-temporal statistical models for river monitoring networks
    Clement, L
    Thas, O
    Vanrolleghem, PA
    Ottoy, JP
    [J]. WATER SCIENCE AND TECHNOLOGY, 2006, 53 (01) : 9 - 15
  • [5] Spatio-temporal variation and trends of long-term meteorological variables in Nigeria
    Israel, Emmanuel
    David, Adedayo Kayode
    Omolara, Emmanuel Grace
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (24)
  • [6] Spatio-temporal variation and trends of long-term meteorological variables in Nigeria
    Emmanuel Israel
    Adedayo Kayode David
    Emmanuel Grace Omolara
    [J]. Arabian Journal of Geosciences, 2020, 13
  • [7] Statistical assessment for spatio-temporal water quality in Angkor, Cambodia
    Ki, Seo Jin
    Kang, Joo-Hyon
    Lee, Young Geun
    Lee, Yun Seok
    Sthiannopkao, Suthipong
    Kim, Joon Ha
    [J]. WATER SCIENCE AND TECHNOLOGY, 2009, 59 (11) : 2167 - 2178
  • [8] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    [J]. SORT, 2011, 35 (02): : 165 - 178
  • [9] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [10] Spatio-temporal ecological models
    Chen, Qiuwen
    Han, Rui
    Ye, Fei
    Li, Weifeng
    [J]. ECOLOGICAL INFORMATICS, 2011, 6 (01) : 37 - 43