Statistical assessment of spatio-temporal pollutant trends and meteorological transport models

被引:26
|
作者
Haas, TC [1 ]
机构
[1] Univ Wisconsin, Sch Business Adm, Milwaukee, WI 53201 USA
关键词
sulfate deposition; local regression; kriging; Monte-Carlo hypothesis testing;
D O I
10.1016/S1352-2310(97)00418-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Up to now, modeling and computational difficulties have impeded efforts toward a formal statistical assessment of large-scale, spatio-temporal pollutant trends and the predictive performance of meteorological pollutant transport and deposition models. Until such statistical assessments can be made however, environmental regulators may not always be able to defend regulatory decisions, and modelers may not always be able to give convincing evidence of a proposed model's predictive validity. This article gives a two-stage statistical method that allows such hypothesis testing and model assessment using data observed irregularly through space and time. Stage 1 is to estimate the global covariance matrix of the ra?dom disturbances of a pollutant deposition process and, using this global covariance matrix, stage 2 is to conduct a Monte-Carlo hypothesis test of either a pollutant trend hypothesis or goodness-of-fit of a meteorological pollutant transport and deposition model. This statistical method is described and demonstrated using conterminous U.S, wet sulfate deposition data. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1865 / 1879
页数:15
相关论文
共 50 条
  • [31] Spatio-temporal Conditioned Language Models
    Diaz, Juglar
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2478 - 2478
  • [32] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155
  • [33] Conceptual models for spatio-temporal applications
    Tryfona, N
    Price, R
    Jensen, CS
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 79 - 116
  • [34] Additive models with spatio-temporal data
    Xiangming Fang
    Kung-Sik Chan
    Environmental and Ecological Statistics, 2015, 22 : 61 - 86
  • [35] Some spatio-temporal models in immunology
    Segel, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2343 - 2347
  • [36] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240
  • [37] Spatio-temporal information systems in a statistical context
    Tininini, L
    Paolucci, M
    Sindoni, G
    De Francisci, S
    ADVANCES IN DATABASE TECHNOLOGY - EDBT 2002, 2002, 2287 : 307 - 316
  • [38] Spatio-temporal assessment of vulnerability to drought
    Vinit K. Jain
    R. P. Pandey
    Manoj K. Jain
    Natural Hazards, 2015, 76 : 443 - 469
  • [39] Spatio-temporal assessment of vulnerability to drought
    Jain, Vinit K.
    Pandey, R. P.
    Jain, Manoj K.
    NATURAL HAZARDS, 2015, 76 (01) : 443 - 469
  • [40] Spatio-Temporal Pattern and Trend Extraction on Turkish Meteorological Data
    Goler, Isil
    Senkul, Pinar
    Yazici, Adnan
    COMPUTER AND INFORMATION SCIENCES II, 2012, : 505 - 510