Matrix Autoregressive Spatio-Temporal Models

被引:5
|
作者
Hsu, Nan-Jung [1 ]
Huang, Hsin-Cheng [2 ]
Tsay, Ruey S. [3 ]
机构
[1] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
关键词
Bilinear autoregression; Dimension reduction; Matrix-variate time series; Maximum likelihood; Multi-resolution spline basis functions;
D O I
10.1080/10618600.2021.1938587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Matrix-variate time series are now common in economic, medical, environmental, and atmospheric sciences, typically associated with large matrix dimensions. We introduce a structured autoregressive (AR) model to characterize temporal dynamics in a matrix-variate time series by formulating the AR matrices in a bilinear form. This bilinear parameter structure reduces the model dimension and highlights dynamic interaction among columns and rows in the AR matrices, making the model highly explainable. We further incorporate spatial information and explore sparsity in the AR coefficients by introducing spatial neighborhoods. In addition, we consider a nonstationary multi-resolution spatial covariance model for innovation errors. The resulting spatio-temporal AR model is flexible in capturing heterogeneous spatial and temporal features while maintaining a parsimonious parameterization. The model parameters are estimated by maximum likelihood (ML) with a fast algorithm developed for computation. We conduct a simulation study and present an application to a wind-speed dataset to demonstrate the merits of our methodology. Supplementary files for this article are available online.
引用
收藏
页码:1143 / 1155
页数:13
相关论文
共 50 条
  • [1] Rank-R matrix autoregressive models for modeling spatio-temporal data
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    Kao, Tzu-Chieh
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (02) : 275 - 290
  • [2] Spatio-temporal autoregressive models for US unemployment rate
    de Luna, X
    Genton, MG
    [J]. SPATIAL AND SPATIOTEMPORAL ECONOMETRICS, 2004, 18 : 279 - 294
  • [3] Spatio-temporal autoregressive models defined over brain manifolds
    Valdes-Sosa, PA
    [J]. NEUROINFORMATICS, 2004, 2 (02) : 239 - 250
  • [4] Spatio-temporal autoregressive models defined over brain manifolds
    Pedro A. Valdes-Sosa
    [J]. Neuroinformatics, 2004, 2 : 239 - 250
  • [5] An autoregressive spatio-temporal precipitation model
    Sigrist, Fabio
    Kuensch, Hans R.
    Stahel, Werner A.
    [J]. 1ST CONFERENCE ON SPATIAL STATISTICS 2011 - MAPPING GLOBAL CHANGE, 2011, 3 : 2 - 7
  • [6] Filtering nonlinear spatio-temporal chaos with autoregressive linear stochastic models
    Kang, Emily L.
    Harlim, John
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (12) : 1099 - 1113
  • [7] Semiparametric spatio-temporal models with unknown and banded autoregressive coefficient matrices
    Wang, Hongxia
    Luo, Xuehong
    Ling, Long
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [8] An autoregressive approach to spatio-temporal disease mapping
    Martinez-Beneito, M. A.
    Lopez-Quilez, A.
    Botella-Rocamora, P.
    [J]. STATISTICS IN MEDICINE, 2008, 27 (15) : 2874 - 2889
  • [9] Autoregressive Tensor Factorization for Spatio-temporal Predictions
    Takeuchi, Koh
    Kashima, Hisashi
    Ueda, Naonori
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 1105 - 1110
  • [10] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178