Blind separation of spatio-temporal data sources

被引:0
|
作者
Unger, H [1 ]
Zeevi, YY [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
ICA and similar techniques have been previously applied to either one-dimensional signals or still images. We consider the problem of blind separation of dynamic sources, i.e. functions of both time and two spatial variables. We extend the Sparse ICA (SPICA) approach and apply it to a sliding data cube, defined by the two dimensions of the visual scene and the extent in time over which the mixing problem can be considered to be stationary and linear. This framework and formalism are applied to two special problems encountered in two different fields: The first deals with separation of dynamic reflections from a desired moving visual scene, without having any a priori knowledge on the structure of the images and/or their statistics. The second problem concerns blind separation of 'neural cliques' from the background firing activity of a neural network. The approach is generic in that it is applicable to any linearly mixed dynamic sources.
引用
收藏
页码:962 / 969
页数:8
相关论文
共 50 条
  • [1] Blind separation of spatio-temporal Synfire sources and visualization of neural cliques
    Unger, Hilit
    Zeevi, Yehoshua Y.
    [J]. NEUROCOMPUTING, 2006, 69 (13-15) : 1475 - 1484
  • [2] Spatio-temporal FastICA algorithms for the blind separation of convolutive mixtures
    Douglas, Scott C.
    Gupta, Malay
    Sawada, Hiroshi
    Makino, Shoji
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (05): : 1511 - 1520
  • [3] Spatio-temporal signal processing for blind separation of multichannel signals
    Tugnait, JK
    [J]. DIGITAL SIGNAL PROCESSING TECHNOLOGY, 1996, 2750 : 88 - 103
  • [4] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [5] Spatio-Temporal Event Detection from Multiple Data Sources
    Ahuja, Aman
    Baghudana, Ashish
    Lu, Wei
    Fox, Edward A.
    Reddy, Chandan K.
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 293 - 305
  • [6] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [7] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [8] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [9] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [10] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190