Subquadratic Complexity Gaussian Normal Basis Multiplier over GF(2m) Using Addition of HMVP and TMVP

被引:0
|
作者
Yang, Chun-Sheng [1 ]
Pan, Jeng-Shyang [1 ,2 ,3 ]
Lee, Chiou-Yng [4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Innovat Informat Ind Res Ctr, Harbin, Heilongjiang, Peoples R China
[2] Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Fujian, Peoples R China
[3] Chaoyang Univ Technol, Dept Informat Management, Taichung, Taiwan
[4] Lunghwa Univ Sci & Technol, Dept Comp Informat & Network Engn, Taoyuan, Taiwan
来源
JOURNAL OF INTERNET TECHNOLOGY | 2017年 / 18卷 / 07期
关键词
Subquadratic; GNB; HMVP; TMVP; NORMAL BASES;
D O I
10.6138/JIT.2017.18.7.20161113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and high-performance ECC system plays an important role in network security. We propose a subquadratic complexity digit-serial multiplier based on Gaussian normal basis (GNB) employing Palindromic polynomial decomposition. Using Palindromic polynomial representation, GNB multiplication is expressed as the sum of a Hankel matrix-vector product (HMVP) and a Toeplitz matrix-vector product (TMVP). We present the novel addition of HMVP and TMVP scheme with subquadratic complexities applying two-way TMVP approach. Combining with Palindromic polynomial decomposition and partial product, GNB multiplication is implemented by a digit-serial architecture. According to the theoretical analysis, the proposed digit-serial multiplier has a lower complexities and a better trade-off between time and area.
引用
收藏
页码:1597 / 1603
页数:7
相关论文
共 50 条
  • [41] Low-complexity design of bit-parallel dual-basis multiplier over GF(2m)
    Wang, J. -H.
    Chang, H. W.
    Chiou, C. W.
    Liang, W. -Y.
    IET INFORMATION SECURITY, 2012, 6 (04) : 324 - 328
  • [42] Low Latency GF(2m) Polynomial Basis Multiplier
    Luis Imana, Jose
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (05) : 935 - 946
  • [43] Efficient Subquadratic Space Complexity Digit-Serial Multipliers over GF(2m) based on Bivariate Polynomial Basis Representation
    Lee, Chiou-Yng
    Xie, Jiafeng
    2020 25TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2020, 2020, : 253 - 258
  • [44] Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials
    Lee, CY
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2003, 150 (01): : 39 - 42
  • [45] Subquadratic Polynomial Multiplication over GF(2m) Using Trinomial Bases and Chinese Remaindering
    Schost, Eric
    Hariri, Arash
    SELECTED AREAS IN CRYPTOGRAPHY, 2009, 5381 : 361 - +
  • [46] Performance Analysis of Gaussian Normal Basis GF (2m) Serial Multipliers and Inverters
    Puligunta, Mahidhar
    El-Razouk, Hayssam
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 738 - 746
  • [47] An FPGA implementation of a Montgomery multiplier over GF(2M)
    Mentens, N
    Örs, SB
    Preneel, B
    Vandewalle, J
    COMPUTING AND INFORMATICS, 2004, 23 (5-6) : 487 - 499
  • [48] Unified parallel Systolic multiplier over GF(2m)
    Lee, Chiou-Yng
    Chen, Yung-Hui
    Chiou, Che-Wun
    Lin, Jim-Min
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2007, 22 (01) : 28 - 38
  • [49] Multiplexer implementation of low-complexity polynomial basis multiplier in GF(2m) using all one polynomial
    Chiou, Che Wun
    Lee, Chiou-Yng
    Yeh, Yun-Chi
    INFORMATION PROCESSING LETTERS, 2011, 111 (21-22) : 1044 - 1047
  • [50] NORMAL BASIS OF FINITE FIELD GF(2M ).
    Pei, Din Y.
    Wang, Charles C.
    Omura, Jim K.
    IEEE Transactions on Information Theory, 1986, IT-32 (02) : 285 - 287