Subquadratic Complexity Gaussian Normal Basis Multiplier over GF(2m) Using Addition of HMVP and TMVP

被引:0
|
作者
Yang, Chun-Sheng [1 ]
Pan, Jeng-Shyang [1 ,2 ,3 ]
Lee, Chiou-Yng [4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Innovat Informat Ind Res Ctr, Harbin, Heilongjiang, Peoples R China
[2] Fujian Univ Technol, Fujian Prov Key Lab Big Data Min & Applicat, Fuzhou, Fujian, Peoples R China
[3] Chaoyang Univ Technol, Dept Informat Management, Taichung, Taiwan
[4] Lunghwa Univ Sci & Technol, Dept Comp Informat & Network Engn, Taoyuan, Taiwan
来源
JOURNAL OF INTERNET TECHNOLOGY | 2017年 / 18卷 / 07期
关键词
Subquadratic; GNB; HMVP; TMVP; NORMAL BASES;
D O I
10.6138/JIT.2017.18.7.20161113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and high-performance ECC system plays an important role in network security. We propose a subquadratic complexity digit-serial multiplier based on Gaussian normal basis (GNB) employing Palindromic polynomial decomposition. Using Palindromic polynomial representation, GNB multiplication is expressed as the sum of a Hankel matrix-vector product (HMVP) and a Toeplitz matrix-vector product (TMVP). We present the novel addition of HMVP and TMVP scheme with subquadratic complexities applying two-way TMVP approach. Combining with Palindromic polynomial decomposition and partial product, GNB multiplication is implemented by a digit-serial architecture. According to the theoretical analysis, the proposed digit-serial multiplier has a lower complexities and a better trade-off between time and area.
引用
收藏
页码:1597 / 1603
页数:7
相关论文
共 50 条
  • [31] Low-complexity multiplexer-based normal basis multiplier over GF(2~m)
    Jenn-Shyong HORNG
    I-Chang JOU
    Chiou-Yng LEE
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (06) : 834 - 842
  • [32] Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector Representation
    Chiou-Yng Lee
    Che Wun Chiou
    Journal of Signal Processing Systems, 2012, 69 : 197 - 211
  • [33] A new word-parallel bit-serial normal basis multiplier over GF(2m)
    Cho, Yong Suk
    Choi, Jae Yeon
    International Journal of Control and Automation, 2013, 6 (03): : 209 - 216
  • [34] Low Complexity Digit-serial Multiplier Over GF(2m) Using Karatsuba Technology
    Lee, Trong-Yen
    Liu, Min-Jea
    Fan, Chia-Chen
    Tsai, Chia-Chun
    Wu, Haixia
    2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS), 2013, : 461 - 466
  • [35] Efficient and low-complexity hardware architecture of Gaussian normal basis multiplication over GF(2m) for elliptic curve cryptosystems
    Rashidi, Bahram
    Sayedi, Sayed Masoud
    Farashahi, Reza Rezaeian
    IET CIRCUITS DEVICES & SYSTEMS, 2017, 11 (02) : 103 - 112
  • [36] Concurrent error detection and correction in dual basis multiplier over GF(2m)
    Chiou, C. W.
    Lee, C. -Y.
    Lin, J. -M.
    Hou, T. -W.
    Chang, C. -C.
    IET CIRCUITS DEVICES & SYSTEMS, 2009, 3 (01) : 22 - 40
  • [37] A Novel Polynomial Basis Multiplier for Arbitrary Elliptic Curves over GF (2m)
    Mosin, Abdul
    Ravindra, J. V. R.
    2014 INTERNATIONAL CONFERENCE FOR CONVERGENCE OF TECHNOLOGY (I2CT), 2014,
  • [38] Low Cost Dual-Basis Multiplier over GF(2m) Using Multiplexer Approach
    Chang, Hung Wei
    Liang, Wen-Yew
    Chiou, Che Wun
    KNOWLEDGE DISCOVERY AND DATA MINING, 2012, 135 : 185 - +
  • [39] Dual basis digit serial GF(2m) multiplier
    Ibrahim, MK
    Aggoun, A
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2002, 89 (07) : 517 - 523
  • [40] Concurrent error detection and correction in a polynomial basis multiplier over GF(2m)
    Huang, W-T
    Chang, C. H.
    Chiou, C. W.
    Chou, F. H.
    IET INFORMATION SECURITY, 2010, 4 (03) : 111 - 124