Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system

被引:2
|
作者
Valenzuela, Luis Miguel [1 ]
Ble, Gamaliel [2 ]
Falconi, Manuel [3 ]
Guerrero, David [1 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera NacajucaJalpa Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] UJAT, Div Acad Ciencias Bas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
Lengyel-Epstein system; Oscillating reaction; Hopf bifurcation; Bautin bifurcation; CHEMICAL OSCILLATORS; DIOXIDE; STABILITY; PATTERNS; DESIGN; MODEL;
D O I
10.1007/s10910-019-01099-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized Lengyel-Epstein oscillating reaction model is proposed and analyzed. The existence of limit cycles is proved using Hopf and Bautin bifurcation theory. We analyze the dynamics of the well known chlorine dioxide-iodine-malonic acid reaction, using a differential equations system. The numerical results are shown and these agree with the experimental data reported in the literature. We found that the oscillatory behavior depends on the stoichiometric coefficients and the reactant concentrations. This work gives valuable information for applications like design, optimization, dynamics and control of the industrial chemical reactors.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [41] Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models
    Almatroud, Othman Abdullah
    Hioual, Amel
    Ouannas, Adel
    Batiha, Iqbal M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 25 - 32
  • [42] Fractal Dimension of Turing Instability in the Fractional Lengyel-Epstein Model
    Yun, Ana
    Lee, Dongsun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (03):
  • [43] Numerical study and stability of the Lengyel-Epstein chemical model with diffusion
    Zafar, Zain Ul Abadin
    Shah, Zahir
    Ali, Nigar
    Kumam, Poom
    Alzahrani, Ebraheem O.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [44] Lengyel-Epstein方程的渐近稳定性
    段祖宁
    徐本龙
    上海师范大学学报(自然科学版), 2010, 39 (自然科学版) : 30 - 34
  • [45] Lengyel-Epstein方程的渐近稳定性
    段祖宁
    徐本龙
    上海师范大学学报(自然科学版), 2010, 39 (01) : 30 - 34
  • [46] 2维Lengyel-Epstein模型的分支结构
    李月霞
    张丽娜
    张晓杰
    山东大学学报(理学版), 2016, 51 (08) : 74 - 78+83
  • [47] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Yaying Dong
    Shunli Zhang
    Shanbing Li
    Advances in Difference Equations, 2016
  • [48] Time Optimal Controls of the Lengyel-Epstein Model with Internal Control
    Zheng, Jiashan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (02): : 345 - 371
  • [49] Bautin bifurcations of a financial system
    Sang, Bo
    Huang, Bo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (95) : 1 - 22
  • [50] A novel image inpainting method based on a modified Lengyel-Epstein model
    Wang, Jian
    Luo, Mengyu
    Chen, Xinlei
    Xu, Heming
    Kim, Junseok
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249