Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models

被引:2
|
作者
Almatroud, Othman Abdullah [1 ]
Hioual, Amel [2 ]
Ouannas, Adel [2 ]
Batiha, Iqbal M. [3 ,4 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Univ Oum El Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[3] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[4] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
关键词
Discrete reaction-diffusion system; Lengyel-Epstein reaction-diffusion model; Degn-Harrison reaction-diffusion model; Stability analysis; SYNCHRONIZATION; EXISTENCE;
D O I
10.1016/j.camwa.2024.06.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we delve into the analysis of a generalized discrete reaction-diffusion system. Our study begins with the discretization of a generalized reaction-diffusion model, achieved through second-order and L1- difference approximations. We explore the local stability of its unique solution, both in the absence and presence of the diffusion term. To determine the conditions for global asymptotic stability of the steady-state solution, we employ suitable techniques including the direct Lyapunov method. To illustrate the practical application of this theoretical framework, we provide several numerical simulations that examine both the Lengyel-Epstein reaction- diffusion model and the discrete Degn-Harrison reaction-diffusion model. These simulations serve to validate the predictions of asymptotic stability.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 16 条
  • [1] On the asymptotic stability of the time-fractional Lengyel-Epstein system
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1415 - 1430
  • [2] On the global asymptotic stability of solutions to a generalised Lengyel-Epstein system
    Abdelmalek, Salem
    Bendoukha, Samir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 397 - 413
  • [3] Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay
    Merdan, H.
    Kayan, S.
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1757 - 1770
  • [4] Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [5] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Nauman Ahmed
    Muhammad Z. Baber
    Muhammad Sajid Iqbal
    Amina Annum
    Syed Mansoor Ali
    Mubasher Ali
    Ali Akgül
    Sayed M. El Din
    Scientific Reports, 13
  • [6] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Ahmed, Nauman
    Baber, Muhammad Z.
    Iqbal, Muhammad Sajid
    Annum, Amina
    Ali, Syed Mansoor
    Ali, Mubasher
    Akgul, Ali
    El Din, Sayed M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 52 - 55
  • [8] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [9] Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system
    Zhang, Cun-Hua
    He, Ye
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [10] Hopf bifurcations in Lengyel–Epstein reaction–diffusion model with discrete time delay
    H. Merdan
    Ş. Kayan
    Nonlinear Dynamics, 2015, 79 : 1757 - 1770