Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system

被引:52
|
作者
Yi, Fengqi [1 ]
Wei, Junjie [1 ]
Shi, Junping [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Lengyel-Epstein system; CIMA reaction; Invariant rectangle; Lyapunov function; Global asymptotical stability; PATTERNS;
D O I
10.1016/j.aml.2008.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lengyel-Epstein reaction-diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions eventually converge to a spatially homogeneous and time-periodic solution. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [1] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [2] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Yaying Dong
    Shunli Zhang
    Shanbing Li
    Advances in Difference Equations, 2016
  • [3] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [4] Bifurcations in Twinkling Patterns for the Lengyel-Epstein Reaction-Diffusion Model
    Sarria-Gonzalez, J.
    Sgura, Ivonne
    Ricard, M. R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (11):
  • [5] Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [6] On the global dynamics of the Lengyel-Epstein system
    Lisena, Benedetta
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 67 - 75
  • [7] Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay
    Merdan, H.
    Kayan, S.
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1757 - 1770
  • [8] Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms
    Wang, Ling
    Zhao, Hongyong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9229 - 9244
  • [9] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [10] Turing patterns in the Lengyel-Epstein system for the CIMA reaction
    Ni, WM
    Tang, MX
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 3953 - 3969