Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system

被引:52
|
作者
Yi, Fengqi [1 ]
Wei, Junjie [1 ]
Shi, Junping [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Lengyel-Epstein system; CIMA reaction; Invariant rectangle; Lyapunov function; Global asymptotical stability; PATTERNS;
D O I
10.1016/j.aml.2008.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lengyel-Epstein reaction-diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions eventually converge to a spatially homogeneous and time-periodic solution. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [21] Turing instability in the Lengyel-Epstein fractional Laplacian system
    Zidi, Salim
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [22] On the asymptotic stability of the time-fractional Lengyel-Epstein system
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1415 - 1430
  • [23] Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models
    Almatroud, Othman Abdullah
    Hioual, Amel
    Ouannas, Adel
    Batiha, Iqbal M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 25 - 32
  • [24] Hexagonal Patterns in the 2-D Lengyel-Epstein System
    Li-na ZHANG
    Fei XU
    Journal of Mathematical Research with Applications, 2019, 39 (03) : 269 - 276
  • [25] Asymptotical behavior of solutions of some reaction-diffusion systems
    Bidaut-Veron, MF
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 13 - 19
  • [26] Global behavior of solutions to a reaction-diffusion system
    Cui, SB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (03) : 351 - 379
  • [27] Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system
    Zhang, Cun-Hua
    He, Ye
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [28] Turing structures and stability for the 1-D Lengyel-Epstein system
    Wei, Meihua
    Wu, Jianhua
    Guo, Gaihui
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (09) : 2374 - 2396
  • [29] Chaos and Hopf Bifurcation Analysis of the Delayed Local Lengyel-Epstein System
    Liu, Qingsong
    Lin, Yiping
    Cao, Jingnan
    Cao, Jinde
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [30] Dynamic Analysis and Hopf Bifurcation of a Lengyel-Epstein System with Two Delays
    Li, Long
    Zhang, Yanxia
    JOURNAL OF MATHEMATICS, 2021, 2021