Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system

被引:52
|
作者
Yi, Fengqi [1 ]
Wei, Junjie [1 ]
Shi, Junping [2 ,3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Harbin Normal Univ, Sch Math, Harbin 150025, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Lengyel-Epstein system; CIMA reaction; Invariant rectangle; Lyapunov function; Global asymptotical stability; PATTERNS;
D O I
10.1016/j.aml.2008.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lengyel-Epstein reaction-diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions eventually converge to a spatially homogeneous and time-periodic solution. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条