Turing structures and stability for the 1-D Lengyel-Epstein system

被引:12
|
作者
Wei, Meihua [1 ]
Wu, Jianhua [1 ]
Guo, Gaihui [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lengyel-Epstein system; Turing bifurcation; Stability; Lyapunov-Schmidt procedure; Normal form; REACTION-DIFFUSION SYSTEMS; PATTERNS; BIFURCATION;
D O I
10.1007/s10910-012-0037-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper continues the analysis on the Lengyel-Epstein reaction- diffusion system of the chlorite-iodide-malonic acid-starch (CIMA) reaction for the rich Turing structures. The steady state structures, especially the double bifurcation one, and their stability and multiplicity are studied by the use of Lyapunov-Schmidt reduction technique and singularity theory. Numerical simulations are presented to support our theoretical studies. The results show that the richer stationary Turing patterns heavily rely both on the size of the reactor and on the effective diffusion rate in the CIMA reaction.
引用
收藏
页码:2374 / 2396
页数:23
相关论文
共 50 条
  • [1] Turing structures and stability for the 1-D Lengyel–Epstein system
    Meihua Wei
    Jianhua Wu
    Gaihui Guo
    Journal of Mathematical Chemistry, 2012, 50 : 2374 - 2396
  • [2] Turing Patterns in the Lengyel-Epstein System with Superdiffusion
    Liu, Biao
    Wu, Ranchao
    Iqbal, Naveed
    Chen, Liping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [3] Turing patterns in the Lengyel-Epstein system for the CIMA reaction
    Ni, WM
    Tang, MX
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 3953 - 3969
  • [4] Turing instability in the Lengyel-Epstein fractional Laplacian system
    Zidi, Salim
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [5] On the stability and nonexistence of turing patterns for the generalized Lengyel-Epstein model
    Abdelmalek, S.
    Bendoukha, S.
    Rebiai, B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 6295 - 6305
  • [6] Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 283 - 294
  • [7] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [8] Fractal Dimension of Turing Instability in the Fractional Lengyel-Epstein Model
    Yun, Ana
    Lee, Dongsun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (03):
  • [9] On the asymptotic stability of the time-fractional Lengyel-Epstein system
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1415 - 1430
  • [10] Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model
    Jaeduck Jang
    Wei-Ming Ni
    Moxun Tang
    Journal of Dynamics and Differential Equations, 2004, 16 (2) : 297 - 320