Turing structures and stability for the 1-D Lengyel-Epstein system

被引:12
|
作者
Wei, Meihua [1 ]
Wu, Jianhua [1 ]
Guo, Gaihui [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lengyel-Epstein system; Turing bifurcation; Stability; Lyapunov-Schmidt procedure; Normal form; REACTION-DIFFUSION SYSTEMS; PATTERNS; BIFURCATION;
D O I
10.1007/s10910-012-0037-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper continues the analysis on the Lengyel-Epstein reaction- diffusion system of the chlorite-iodide-malonic acid-starch (CIMA) reaction for the rich Turing structures. The steady state structures, especially the double bifurcation one, and their stability and multiplicity are studied by the use of Lyapunov-Schmidt reduction technique and singularity theory. Numerical simulations are presented to support our theoretical studies. The results show that the richer stationary Turing patterns heavily rely both on the size of the reactor and on the effective diffusion rate in the CIMA reaction.
引用
收藏
页码:2374 / 2396
页数:23
相关论文
共 50 条
  • [21] Numerical study and stability of the Lengyel-Epstein chemical model with diffusion
    Zafar, Zain Ul Abadin
    Shah, Zahir
    Ali, Nigar
    Kumam, Poom
    Alzahrani, Ebraheem O.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [22] Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system
    Chen, Xianyong
    Jiang, Weihua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 49 : 386 - 404
  • [23] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 1038 - 1051
  • [24] Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system
    Zhang, Cun-Hua
    He, Ye
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [25] Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 52 - 55
  • [26] Chaos and Hopf Bifurcation Analysis of the Delayed Local Lengyel-Epstein System
    Liu, Qingsong
    Lin, Yiping
    Cao, Jingnan
    Cao, Jinde
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [27] Dynamic Analysis and Hopf Bifurcation of a Lengyel-Epstein System with Two Delays
    Li, Long
    Zhang, Yanxia
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [28] Non-constant steady states for the Lengyel-Epstein system with the CIMA reaction
    Ma, Manjun
    Tao, Jicheng
    Wu, Delin
    Han, Yazhou
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 19 - 23
  • [29] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [30] 增长区域上Lengyel-Epstein系统的Turing不稳定性
    唐秋林
    吴美云
    虞婷
    数学的实践与认识, 2011, 41 (19) : 223 - 228