Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
|
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bifurcations in Twinkling Patterns for the Lengyel-Epstein Reaction-Diffusion Model
    Sarria-Gonzalez, J.
    Sgura, Ivonne
    Ricard, M. R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (11):
  • [2] Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay
    Merdan, H.
    Kayan, S.
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1757 - 1770
  • [3] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [4] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Yaying Dong
    Shunli Zhang
    Shanbing Li
    Advances in Difference Equations, 2016
  • [5] Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 52 - 55
  • [6] Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system
    Valenzuela, Luis Miguel
    Ble, Gamaliel
    Falconi, Manuel
    Guerrero, David
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (02) : 497 - 515
  • [7] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [8] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [9] Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 283 - 294
  • [10] Qualitative analysis and Hopf bifurcation of a generalized Lengyel-Epstein model
    Chen, Mengxin
    Wang, Tian
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (01) : 166 - 192