Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
|
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Turing Instability and Pattern Formation for the Lengyel–Epstein System with Nonlinear Diffusion
    G. Gambino
    M. C. Lombardo
    M. Sammartino
    Acta Applicandae Mathematicae, 2014, 132 : 283 - 294
  • [32] PATTERN-FORMATION IN NONGRADIENT REACTION-DIFFUSION SYSTEMS - THE EFFECTS OF FRONT BIFURCATIONS
    HAGBERG, A
    MERON, E
    NONLINEARITY, 1994, 7 (03) : 805 - 835
  • [33] A Reaction-Diffusion Model of Spatial Pattern Formation in Electrodeposition
    Bozzini, Benedetto
    Lacitignola, Deborah
    Sgura, Ivonne
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [34] Pattern selection in reaction-diffusion systems with competing bifurcations
    Dewel, G
    DeWit, A
    Metens, S
    Verdasca, J
    Borckmans, P
    PHYSICA SCRIPTA, 1996, T67 : 51 - 57
  • [35] Non-constant steady states for the Lengyel-Epstein system with the CIMA reaction
    Ma, Manjun
    Tao, Jicheng
    Wu, Delin
    Han, Yazhou
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 19 - 23
  • [36] A novel image inpainting method based on a modified Lengyel-Epstein model
    Wang, Jian
    Luo, Mengyu
    Chen, Xinlei
    Xu, Heming
    Kim, Junseok
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [37] Non-monotonic resonance in a spatially forced Lengyel-Epstein model
    Haim, Lev
    Hagberg, Aric
    Meron, Ehud
    CHAOS, 2015, 25 (06)
  • [38] Optimal control problem for Lengyel-Epstein model with obstacles and state constraints
    Zheng, Jiashan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (01): : 18 - 39
  • [39] Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers
    Bansagi, T., Jr.
    Taylor, A. F.
    CHAOS, 2015, 25 (06)
  • [40] Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation
    Kondo, Shigeru
    Miura, Takashi
    SCIENCE, 2010, 329 (5999) : 1616 - 1620