Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
|
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models
    Almatroud, Othman Abdullah
    Hioual, Amel
    Ouannas, Adel
    Batiha, Iqbal M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 25 - 32
  • [22] LOCALIZED STRUCTURES AND FRONT PROPAGATION IN THE LENGYEL-EPSTEIN MODEL
    JENSEN, O
    PANNBACKER, VO
    MOSEKILDE, E
    DEWEL, G
    BORCKMANS, P
    PHYSICAL REVIEW E, 1994, 50 (02): : 736 - 749
  • [23] RETRACTED: Fractional order Lengyel-Epstein chemical reaction model (Retracted Article)
    Zafar, Zain Ul Abadin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03):
  • [24] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 1038 - 1051
  • [25] BIFURCATIONS OF PATTERNED SOLUTIONS IN THE DIFFUSIVE LENGYEL-EPSTEIN SYSTEM OF CIMA CHEMICAL REACTIONS
    Jin, Jiayin
    Shi, Junping
    Wei, Junjie
    Yi, Fengqi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1637 - 1674
  • [26] Shape transformation based on the modified Lengyel-Epstein model
    Zhang, Guangxin
    Wang, Minzhen
    Meng, Xianfa
    Zheng, Yan
    Cheng, Shichao
    Wang, Jian
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [27] Qualitative Analysis of Bifurcating Solutions in the Lengyel-Epstein Model
    张丽娜
    吴建华
    数学进展, 2008, (01) : 115 - 117
  • [28] Hopf and Bautin bifurcations in a generalized Lengyel–Epstein system
    Luis Miguel Valenzuela
    Gamaliel Blé
    Manuel Falconi
    David Guerrero
    Journal of Mathematical Chemistry, 2020, 58 : 497 - 515
  • [29] Fractal Dimension of Turing Instability in the Fractional Lengyel-Epstein Model
    Yun, Ana
    Lee, Dongsun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (03):
  • [30] Time Optimal Controls of the Lengyel-Epstein Model with Internal Control
    Zheng, Jiashan
    APPLIED MATHEMATICS AND OPTIMIZATION, 2014, 70 (02): : 345 - 371