Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model

被引:8
|
作者
Mansouri, Djamel [1 ,2 ]
Abdelmalek, Salem [2 ,3 ]
Bendoukha, Samir [4 ]
机构
[1] Univ Abbes Laghrour, Dept Math, Khenchela, Algeria
[2] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Taibah Univ, Elect Engn Dept, Coll Engn Yanbu, Medina, Saudi Arabia
关键词
General lengyel-Epstein model; Reaction-diffusion; Hopf-bifurcation; Pattern formation; TURING PATTERNS; SYSTEMATIC DESIGN; OSCILLATIONS; STABILITY;
D O I
10.1016/j.chaos.2019.109579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the formation of spatial patterns in a general reaction-diffusion system based on the Lengyel-Epstein CIMA model. By analyzing the properties of the system's unique positive equilibrium in the ODE and PDE cases, we establish the existence of non-constant steady state solutions thereby confirming the existence of Turing instability. Hopf-bifurcation analysis of the system show the existence of periodic solutions in the absence and presence of diffusion. Numerical simulations are presented to validate the theoretical results of the paper. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Pattern formation in a reaction-diffusion parasite-host model
    Zhang, Baoxiang
    Cai, Yongli
    Wang, Bingxian
    Wang, Weiming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 732 - 740
  • [42] Pattern formation of a biomass-water reaction-diffusion model
    Lei, Chengxia
    Zhang, Guanghui
    Zhou, Jialin
    APPLIED MATHEMATICS LETTERS, 2022, 123
  • [43] SPATIOTEMPORAL PATTERNS IN A LENGYEL-EPSTEIN MODEL NEAR A TURING HOPF SINGULAR POINT
    Zhao, Shuangrui
    Yu, Pei
    Wang, Hongbin
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (02) : 338 - 361
  • [44] Computer simulations of three-dimensional Turing patterns in the Lengyel-Epstein model
    Shoji, Hiroto
    Ohta, Takao
    PHYSICAL REVIEW E, 2015, 91 (03):
  • [45] RETRACTION: Fractional order Lengyel-Epstein chemical reaction model (Retraction of Vol 38, art no 131, 2019)
    Zafar, Zain Ul Abadin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [46] BIFURCATIONS IN REACTION-DIFFUSION PROBLEMS
    HOWARD, LN
    ADVANCES IN MATHEMATICS, 1975, 16 (02) : 246 - 258
  • [47] Fronts and pattern formation in reaction-diffusion systems
    Droz, M
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 211 - 220
  • [48] PATTERN FORMATION IN CHEMOTAXIC REACTION-DIFFUSION SYSTEMS
    Shoji, Hiroto
    Saitoh, Keitaro
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (03)
  • [49] Rethinking pattern formation in reaction-diffusion systems
    Halatek, J.
    Frey, E.
    NATURE PHYSICS, 2018, 14 (05) : 507 - +
  • [50] Pattern formation in a fractional reaction-diffusion system
    Gafiychuk, V. V.
    Datsko, B. Yo.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 300 - 306