Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system

被引:2
|
作者
Valenzuela, Luis Miguel [1 ]
Ble, Gamaliel [2 ]
Falconi, Manuel [3 ]
Guerrero, David [1 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera NacajucaJalpa Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] UJAT, Div Acad Ciencias Bas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
Lengyel-Epstein system; Oscillating reaction; Hopf bifurcation; Bautin bifurcation; CHEMICAL OSCILLATORS; DIOXIDE; STABILITY; PATTERNS; DESIGN; MODEL;
D O I
10.1007/s10910-019-01099-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized Lengyel-Epstein oscillating reaction model is proposed and analyzed. The existence of limit cycles is proved using Hopf and Bautin bifurcation theory. We analyze the dynamics of the well known chlorine dioxide-iodine-malonic acid reaction, using a differential equations system. The numerical results are shown and these agree with the experimental data reported in the literature. We found that the oscillatory behavior depends on the stoichiometric coefficients and the reactant concentrations. This work gives valuable information for applications like design, optimization, dynamics and control of the industrial chemical reactors.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [1] Hopf and Bautin bifurcations in a generalized Lengyel–Epstein system
    Luis Miguel Valenzuela
    Gamaliel Blé
    Manuel Falconi
    David Guerrero
    Journal of Mathematical Chemistry, 2020, 58 : 497 - 515
  • [2] Bautin bifurcation for the Lengyel-Epstein system
    Wu, Xiaoqin P.
    Eshete, Matthewos
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (10) : 2570 - 2580
  • [3] Qualitative analysis and Hopf bifurcation of a generalized Lengyel-Epstein model
    Chen, Mengxin
    Wang, Tian
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (01) : 166 - 192
  • [4] Multiple stability switches and Hopf bifurcations induced by the delay in a Lengyel-Epstein chemical reaction system
    Zhang, Cun-Hua
    He, Ye
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [5] HOPF BIFURCATIONS OF A LENGYEL-EPSTEIN MODEL INVOLVING TWO DISCRETE TIME DELAYS
    Bilazeroglu, Seyma
    Merdan, Huseyin
    Guerrini, Luca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 535 - 554
  • [6] Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [7] Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay
    Merdan, H.
    Kayan, S.
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1757 - 1770
  • [8] Chaos and Hopf Bifurcation Analysis of the Delayed Local Lengyel-Epstein System
    Liu, Qingsong
    Lin, Yiping
    Cao, Jingnan
    Cao, Jinde
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [9] Dynamic Analysis and Hopf Bifurcation of a Lengyel-Epstein System with Two Delays
    Li, Long
    Zhang, Yanxia
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Bautin bifurcation for the Lengyel–Epstein system
    Xiaoqin P. Wu
    Matthewos Eshete
    Journal of Mathematical Chemistry, 2014, 52 : 2570 - 2580