Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system

被引:2
|
作者
Valenzuela, Luis Miguel [1 ]
Ble, Gamaliel [2 ]
Falconi, Manuel [3 ]
Guerrero, David [1 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera NacajucaJalpa Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] UJAT, Div Acad Ciencias Bas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
Lengyel-Epstein system; Oscillating reaction; Hopf bifurcation; Bautin bifurcation; CHEMICAL OSCILLATORS; DIOXIDE; STABILITY; PATTERNS; DESIGN; MODEL;
D O I
10.1007/s10910-019-01099-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized Lengyel-Epstein oscillating reaction model is proposed and analyzed. The existence of limit cycles is proved using Hopf and Bautin bifurcation theory. We analyze the dynamics of the well known chlorine dioxide-iodine-malonic acid reaction, using a differential equations system. The numerical results are shown and these agree with the experimental data reported in the literature. We found that the oscillatory behavior depends on the stoichiometric coefficients and the reactant concentrations. This work gives valuable information for applications like design, optimization, dynamics and control of the industrial chemical reactors.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [21] Hexagonal Patterns in the 2-D Lengyel-Epstein System
    Li-na ZHANG
    Fei XU
    Journal of Mathematical Research with Applications, 2019, 39 (03) : 269 - 276
  • [22] On the global asymptotic stability of solutions to a generalised Lengyel-Epstein system
    Abdelmalek, Salem
    Bendoukha, Samir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 397 - 413
  • [23] Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 1038 - 1051
  • [24] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Nauman Ahmed
    Muhammad Z. Baber
    Muhammad Sajid Iqbal
    Amina Annum
    Syed Mansoor Ali
    Mubasher Ali
    Ali Akgül
    Sayed M. El Din
    Scientific Reports, 13
  • [25] Analytical study of reaction diffusion Lengyel-Epstein system by generalized Riccati equation mapping method
    Ahmed, Nauman
    Baber, Muhammad Z.
    Iqbal, Muhammad Sajid
    Annum, Amina
    Ali, Syed Mansoor
    Ali, Mubasher
    Akgul, Ali
    El Din, Sayed M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms
    Wang, Ling
    Zhao, Hongyong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9229 - 9244
  • [27] Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system
    Chen, Xianyong
    Jiang, Weihua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 49 : 386 - 404
  • [28] Qualitative analysis and Hopf bifurcation of a generalized Lengyel–Epstein model
    Mengxin Chen
    Tian Wang
    Journal of Mathematical Chemistry, 2023, 61 : 166 - 192
  • [29] Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model
    Du, Linglong
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 473 - 485
  • [30] On the dynamics of the Lengyel-Epstein model with forcing intensity
    Rionero, Salvatore
    Vitiello, Maria
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 739 - 754