Hopf and Bautin bifurcations in a generalized Lengyel-Epstein system

被引:2
|
作者
Valenzuela, Luis Miguel [1 ]
Ble, Gamaliel [2 ]
Falconi, Manuel [3 ]
Guerrero, David [1 ]
机构
[1] UJAT, Div Acad Multidisciplinaria Jalpa de Mendez, Carretera NacajucaJalpa Mendez, Carretera Nacajuca Jalpa de Mendez, Jalpa De Mendez 86205, Tabasco, Mexico
[2] UJAT, Div Acad Ciencias Bas, Km 1 Carretera Cunduacan Jalpa, Cunduacan 86690, Tabasco, Mexico
[3] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
Lengyel-Epstein system; Oscillating reaction; Hopf bifurcation; Bautin bifurcation; CHEMICAL OSCILLATORS; DIOXIDE; STABILITY; PATTERNS; DESIGN; MODEL;
D O I
10.1007/s10910-019-01099-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A generalized Lengyel-Epstein oscillating reaction model is proposed and analyzed. The existence of limit cycles is proved using Hopf and Bautin bifurcation theory. We analyze the dynamics of the well known chlorine dioxide-iodine-malonic acid reaction, using a differential equations system. The numerical results are shown and these agree with the experimental data reported in the literature. We found that the oscillatory behavior depends on the stoichiometric coefficients and the reactant concentrations. This work gives valuable information for applications like design, optimization, dynamics and control of the industrial chemical reactors.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [31] Hopf bifurcations in Lengyel–Epstein reaction–diffusion model with discrete time delay
    H. Merdan
    Ş. Kayan
    Nonlinear Dynamics, 2015, 79 : 1757 - 1770
  • [32] Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system
    Yi, Fengqi
    Wei, Junjie
    Shi, Junping
    APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 52 - 55
  • [33] Turing structures and stability for the 1-D Lengyel-Epstein system
    Wei, Meihua
    Wu, Jianhua
    Guo, Gaihui
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (09) : 2374 - 2396
  • [34] Turing Instability and Pattern Formation for the Lengyel-Epstein System with Nonlinear Diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 283 - 294
  • [35] LOCALIZED STRUCTURES AND FRONT PROPAGATION IN THE LENGYEL-EPSTEIN MODEL
    JENSEN, O
    PANNBACKER, VO
    MOSEKILDE, E
    DEWEL, G
    BORCKMANS, P
    PHYSICAL REVIEW E, 1994, 50 (02): : 736 - 749
  • [36] Non-constant steady states for the Lengyel-Epstein system with the CIMA reaction
    Ma, Manjun
    Tao, Jicheng
    Wu, Delin
    Han, Yazhou
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 19 - 23
  • [37] Shape transformation based on the modified Lengyel-Epstein model
    Zhang, Guangxin
    Wang, Minzhen
    Meng, Xianfa
    Zheng, Yan
    Cheng, Shichao
    Wang, Jian
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [38] Qualitative Analysis of Bifurcating Solutions in the Lengyel-Epstein Model
    张丽娜
    吴建华
    数学进展, 2008, (01) : 115 - 117
  • [39] Synchronization Control in Reaction-Diffusion Systems: Application to Lengyel-Epstein System
    Ouannas, Adel
    Abdelli, Mouna
    Odibat, Zaid
    Wang, Xiong
    Viet-Thanh Pham
    Grassi, Giuseppe
    Alsaedi, Ahmed
    COMPLEXITY, 2019, 2019
  • [40] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15