Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models

被引:2
|
作者
Almatroud, Othman Abdullah [1 ]
Hioual, Amel [2 ]
Ouannas, Adel [2 ]
Batiha, Iqbal M. [3 ,4 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Univ Oum El Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[3] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[4] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
关键词
Discrete reaction-diffusion system; Lengyel-Epstein reaction-diffusion model; Degn-Harrison reaction-diffusion model; Stability analysis; SYNCHRONIZATION; EXISTENCE;
D O I
10.1016/j.camwa.2024.06.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we delve into the analysis of a generalized discrete reaction-diffusion system. Our study begins with the discretization of a generalized reaction-diffusion model, achieved through second-order and L1- difference approximations. We explore the local stability of its unique solution, both in the absence and presence of the diffusion term. To determine the conditions for global asymptotic stability of the steady-state solution, we employ suitable techniques including the direct Lyapunov method. To illustrate the practical application of this theoretical framework, we provide several numerical simulations that examine both the Lengyel-Epstein reaction- diffusion model and the discrete Degn-Harrison reaction-diffusion model. These simulations serve to validate the predictions of asymptotic stability.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 16 条
  • [11] A generalized Degn-Harrison reaction-diffusion system: Asymptotic stability and non-existence results
    Abbad, Abir
    Abdelmalek, Salem
    Bendoukha, Samir
    Gambino, Gaetana
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 57
  • [12] Hopf bifurcation and Turing instability of 2-D Lengyel-Epstein system with reaction-diffusion terms
    Wang, Ling
    Zhao, Hongyong
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9229 - 9244
  • [13] Finite-Time Stability Analysis of a Discrete-Time Generalized Reaction-Diffusion System
    Almatroud, Othman Abdullah
    Ouannas, Adel
    MATHEMATICS, 2024, 12 (23)
  • [14] Extended Global Asymptotic Stability Conditions for a Generalized Reaction–Diffusion System
    Salem Abdelmalek
    Samir Bendoukha
    Belgacem Rebiai
    Mokhtar Kirane
    Acta Applicandae Mathematicae, 2019, 160 : 1 - 20
  • [15] Extended Global Asymptotic Stability Conditions for a Generalized Reaction-Diffusion System
    Abdelmalek, Salem
    Bendoukha, Samir
    Rebiai, Belgacem
    Kirane, Mokhtar
    ACTA APPLICANDAE MATHEMATICAE, 2019, 160 (01) : 1 - 20
  • [16] Global asymptotic stability of a class of generalized BAM neural networks with reaction-diffusion terms and mixed time delays
    Wang, Lisha
    Ding, Xiaohua
    Li, Mingzhu
    NEUROCOMPUTING, 2018, 321 : 251 - 265