ROBUST AND FAST VOWEL RECOGNITION USING OPTIMUM-PATH FOREST

被引:5
|
作者
Papa, Joao P. [1 ]
Marana, Aparecido N. [1 ]
Spadotto, Andre A. [2 ]
Guido, Rodrigo C. [2 ]
Falcao, Alexandre X. [3 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci, Sao Paulo, Brazil
[2] Univ Fed Sao Paulo, Phys Inst Sao Carlos, Sao Carlos, SP, Brazil
[3] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Speech recognition; Neural networks; Pattern recognition; Signal classification;
D O I
10.1109/ICASSP.2010.5495695
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy.
引用
收藏
页码:2190 / 2193
页数:4
相关论文
共 50 条
  • [21] A New Variant of the Optimum-Path Forest Classifier
    Papa, Joao P.
    Falcao, Alexandre X.
    ADVANCES IN VISUAL COMPUTING, PT I, PROCEEDINGS, 2008, 5358 : 935 - 944
  • [22] A Learning Algorithm for the Optimum-Path Forest Classifier
    Papa, Joao Paulo
    Falcao, Alexandre Xavier
    GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, PROCEEDINGS, 2009, 5534 : 195 - 204
  • [23] Semi-Supervised Pattern Classification Using Optimum-Path Forest
    Amorim, Willian P.
    Falcao, Alexandre X.
    Carvalho, Marcelo H.
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 111 - 118
  • [24] Parkinson Disease Identification using Residual Networks and Optimum-Path Forest
    Passos, Leandro A.
    Pereira, Clayton R.
    Rezende, Edmar R. S.
    Carvalho, Tiago J.
    Weber, Silke A. T.
    Hook, Christian
    Papa, Joao P.
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 325 - 329
  • [25] Automatic Video Summarization Using the Optimum-Path Forest Unsupervised Classifier
    Castelo-Fernandez, Cesar
    Calderon-Ruiz, Guillermo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 760 - 767
  • [26] Active Semi-Supervised Learning using Optimum-Path Forest
    Saito, Priscila T. M.
    Amorim, Willian P.
    Falcao, Alexandre X.
    de Rezende, Pedro J.
    Suzuki, Celso T. N.
    Gomes, Jancarlo F.
    de Carvalho, Marcelo H.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3798 - 3803
  • [27] A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
    de Souza, Renato William R.
    de Oliveira, Joao Vitor Chaves
    Passos, Leandro A., Jr.
    Ding, Weiping
    Papa, Joao P.
    de Albuquerque, Victor Hugo C.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3076 - 3086
  • [28] Improving Optimum-Path Forest Classification Using Unsupervised Manifold Learning
    Afonso, Luis C. S.
    Pedronette, Daniel C. G.
    de Souza, Andre N.
    Papa, Joao P.
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 560 - 565
  • [29] Intrusion Detection in Computer Networks Using Optimum-Path Forest Clustering
    Costa, Kelton
    Pereira, Clayton
    Nakamura, Rodrigo
    Papa, Joao
    37TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2012), 2012, : 128 - 131
  • [30] Modification of Optimum-Path Forest Using Markov Cluster Process Algorithm
    Bostani, Hamid
    Sheikhan, Mansour
    2016 2ND INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2016, : 35 - 39