ROBUST AND FAST VOWEL RECOGNITION USING OPTIMUM-PATH FOREST

被引:5
|
作者
Papa, Joao P. [1 ]
Marana, Aparecido N. [1 ]
Spadotto, Andre A. [2 ]
Guido, Rodrigo C. [2 ]
Falcao, Alexandre X. [3 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci, Sao Paulo, Brazil
[2] Univ Fed Sao Paulo, Phys Inst Sao Carlos, Sao Carlos, SP, Brazil
[3] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Speech recognition; Neural networks; Pattern recognition; Signal classification;
D O I
10.1109/ICASSP.2010.5495695
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy.
引用
收藏
页码:2190 / 2193
页数:4
相关论文
共 50 条
  • [31] Automated recognition of lung diseases in CT images based on the optimum-path forest classifier
    Pedro P. Rebouças Filho
    Antônio C. da Silva Barros
    Geraldo L. B. Ramalho
    Clayton R. Pereira
    João Paulo Papa
    Victor Hugo C. de Albuquerque
    João Manuel R. S. Tavares
    Neural Computing and Applications, 2019, 31 : 901 - 914
  • [32] Automated recognition of lung diseases in CT images based on the optimum-path forest classifier
    Reboucas Filho, Pedro P.
    da Silva Barros, Antonio C.
    Ramalho, Geraldo L. B.
    Pereira, Clayton R.
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (Suppl 2): : 901 - 914
  • [33] Supervised Pattern Classification Based on Optimum-Path Forest
    Papa, J. P.
    Falcao, A. X.
    Suzuki, C. T. N.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2009, 19 (02) : 120 - 131
  • [34] OPFython: A Python']Python implementation for Optimum-Path Forest
    de Rosa, Gustavo H.
    Papa, Joao P.
    SOFTWARE IMPACTS, 2021, 9
  • [35] Training Optimum-Path Forest on Graphics Processing Units
    Iwashita, Adriana S.
    Romero, Marcos V. T.
    Baldassin, Alexandro
    Costa, Kelton A. P.
    Papa, Joao P.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 581 - 588
  • [36] Unsupervised Dialogue Act Classification with Optimum-Path Forest
    Felix Ribeiro, Luiz Carlos
    Papa, Joao Paulo
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 25 - 32
  • [37] ECG arrhythmia classification based on optimum-path forest
    Luz, Eduardo Jose da S.
    Nunes, Thiago M.
    de Albuquerque, Victor Hugo C.
    Papa, Joao P.
    Menotti, David
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (09) : 3561 - 3573
  • [38] Handling imbalanced datasets through Optimum-Path Forest
    Passos, Leandro Aparecido S.
    Jodas, Danilo S.
    Ribeiro, Luiz C. F.
    Akio, Marco
    De Souza, Andre Nunes
    Papa, Joao Paulo
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [39] Optimum-Path Forest Applied for Breast Masses Classification
    Ribeiro, Patricia B.
    da Costa, Kelton A. P.
    Papa, Joao P.
    Romero, Roseli A. F.
    2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2014, : 52 - 55
  • [40] Blur Parameter Identification Through Optimum-Path Forest
    Pires, Rafael G.
    Fernandes, Silas E. N.
    Papa, Joao Paulo
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 17TH INTERNATIONAL CONFERENCE, CAIP 2017, PT II, 2017, 10425 : 230 - 240