ROBUST AND FAST VOWEL RECOGNITION USING OPTIMUM-PATH FOREST

被引:5
|
作者
Papa, Joao P. [1 ]
Marana, Aparecido N. [1 ]
Spadotto, Andre A. [2 ]
Guido, Rodrigo C. [2 ]
Falcao, Alexandre X. [3 ]
机构
[1] Sao Paulo State Univ, Dept Comp Sci, Sao Paulo, Brazil
[2] Univ Fed Sao Paulo, Phys Inst Sao Carlos, Sao Carlos, SP, Brazil
[3] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
关键词
Speech recognition; Neural networks; Pattern recognition; Signal classification;
D O I
10.1109/ICASSP.2010.5495695
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy.
引用
收藏
页码:2190 / 2193
页数:4
相关论文
共 50 条
  • [41] Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
    Nachif Fernandes, Silas Evandro
    Papa, Joao Paulo
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 984 - 991
  • [42] Design of Pattern Classifiers Using Optimum-Path Forest with Applications in Image Analysis
    Falcao, Alexandre X.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2010, 6419 : 2 - 2
  • [43] Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
    Rodrigues, Douglas
    Souza, Andre Nunes
    Papa, Joao Paulo
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 127 - 133
  • [44] A Fast Large Scale Iris Database Classification with Optimum-Path Forest Technique: A Case Study
    Afonso, Luis C. S.
    Papa, Joao P.
    Marana, Aparecido N.
    Poursaberi, Ahmad
    Yanushkevich, Svetlana N.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [45] Static Video Summarization through Optimum-Path Forest Clustering
    Martins, G. B.
    Afonso, L. C. S.
    Osaku, D.
    Almeida, Jurandy
    Papa, J. P.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 893 - 900
  • [46] Multiple-Instance Learning through Optimum-Path Forest
    Afonso, Luis C. S.
    Colombo, Danilo
    Pereira, Clayton R.
    Costa, Kelton A. P.
    Papa, Joao P.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [47] Enhancing Brain Storm Optimization Through Optimum-Path Forest
    Sugi Afonso, Luis Claudio
    Passos, Leandro, Jr.
    Papa, Joao Paulo
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 183 - 188
  • [48] An Optimum-Path Forest framework for intrusion detection in computer networks
    Pereira, Clayton R.
    Nakamura, Rodrigo Y. M.
    Costa, Kelton A. P.
    Papa, Joao P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1226 - 1234
  • [49] Efficient supervised optimum-path forest classification for large datasets
    Papa, Joao P.
    Falcao, Alexandre X.
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    PATTERN RECOGNITION, 2012, 45 (01) : 512 - 520
  • [50] Optimum-Path Forest Classifier for Large Scale Biometric Applications
    Afonso, L. C. S.
    Papa, J. P.
    Marana, A. N.
    Poursaberi, A.
    Yanushkevich, S.
    Gavrilova, M.
    2012 THIRD INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2012, : 58 - 61