Enhancing Brain Storm Optimization Through Optimum-Path Forest

被引:0
|
作者
Sugi Afonso, Luis Claudio [1 ]
Passos, Leandro, Jr. [1 ]
Papa, Joao Paulo [2 ]
机构
[1] UFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
[2] UNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Optimum-Path Forest; Brain Storm Optimization; Clustering; Meta-heuristics; EFFICIENT ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Handling imbalanced datasets through Optimum-Path Forest
    Passos, Leandro Aparecido S.
    Jodas, Danilo S.
    Ribeiro, Luiz C. F.
    Akio, Marco
    De Souza, Andre Nunes
    Papa, Joao Paulo
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [2] AUTOMATIC LANDSLIDE RECOGNITION THROUGH OPTIMUM-PATH FOREST
    Pisani, R.
    Riedel, P.
    Costa, K.
    Nakamura, R.
    Pereira, C.
    Rosa, G.
    Papa, J.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6228 - 6231
  • [3] Blur Parameter Identification Through Optimum-Path Forest
    Pires, Rafael G.
    Fernandes, Silas E. N.
    Papa, Joao Paulo
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 17TH INTERNATIONAL CONFERENCE, CAIP 2017, PT II, 2017, 10425 : 230 - 240
  • [4] Static Video Summarization through Optimum-Path Forest Clustering
    Martins, G. B.
    Afonso, L. C. S.
    Osaku, D.
    Almeida, Jurandy
    Papa, J. P.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 893 - 900
  • [5] Multiple-Instance Learning through Optimum-Path Forest
    Afonso, Luis C. S.
    Colombo, Danilo
    Pereira, Clayton R.
    Costa, Kelton A. P.
    Papa, Joao P.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [6] Unsupervised Breast Masses Classification Through Optimum-Path Forest
    Ribeiro, Patricia. B.
    Passos, Leandro. A., Jr.
    da Silva, Luis. A.
    da Costa, Kelton A. P.
    Papa, Joao P.
    Romero, Roseli A. F.
    2015 IEEE 28TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2015, : 238 - 243
  • [7] Parkinson's disease Identification Through Optimum-Path Forest
    Spadoto, Andre A.
    Guido, Rodrigo C.
    Papa, Joao P.
    Falcao, Alexandre X.
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 6087 - 6090
  • [8] A Comparison about Evolutionary Algorithms for Optimum-Path Forest Clustering Optimization
    da Costa, Kelton A. P.
    Pereira, Clayton R.
    Pereira, Luis A. M.
    Nakamura, Rodrigo M.
    Papa, Joao Paulo
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2013, 8 (02): : 76 - 85
  • [9] AUTOMATIC VISUAL DICTIONARY GENERATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Afonso, L.
    Papa, J.
    Papa, L.
    Marana, A.
    Rocha, Anderson
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1897 - 1900
  • [10] LAND USE IMAGE CLASSIFICATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Pisani, R.
    Riedel, P.
    Ferreira, M.
    Marques, M.
    Mizobe, R.
    Papa, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 826 - 829