Unsupervised Breast Masses Classification Through Optimum-Path Forest

被引:9
|
作者
Ribeiro, Patricia. B. [1 ]
Passos, Leandro. A., Jr. [1 ]
da Silva, Luis. A. [1 ]
da Costa, Kelton A. P. [1 ]
Papa, Joao P. [1 ]
Romero, Roseli A. F. [2 ]
机构
[1] Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
关键词
Optimum-Path Fores; Breast masses; Mammography; MAMMOGRAPHY; FEATURES;
D O I
10.1109/CBMS.2015.53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computer-Aided Diagnosis (CAD) can be divided into two main categories : CADe (Computer-Aided Detection), which is focused on the detection of structures of interest, as well as to assist radiologists to find out signals of interest that might be hidden to human vision; and the CADx (ComputerAided Diagnosis), which works as a second observer, being responsible to give an opinion on a specific lesion. In CADe -based systems, the identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest. The main contribution of this study is to introduce the unsupervised classifier Optimum-Path Forest to identify breast masses, and to evaluate its performance against with two other unsupervised techniques (Gaussian Mixture Model and k-Means) using texture features from images obtained from a private dataset composed by 120 images with and without the presence of masses.
引用
收藏
页码:238 / 243
页数:6
相关论文
共 50 条
  • [1] Optimum-Path Forest Applied for Breast Masses Classification
    Ribeiro, Patricia B.
    da Costa, Kelton A. P.
    Papa, Joao P.
    Romero, Roseli A. F.
    2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2014, : 52 - 55
  • [2] Unsupervised Dialogue Act Classification with Optimum-Path Forest
    Felix Ribeiro, Luiz Carlos
    Papa, Joao Paulo
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 25 - 32
  • [3] Improving Optimum-Path Forest Classification Using Unsupervised Manifold Learning
    Afonso, Luis C. S.
    Pedronette, Daniel C. G.
    de Souza, Andre N.
    Papa, Joao P.
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 560 - 565
  • [4] Unsupervised non-technical losses identification through optimum-path forest
    Passos Junior, Leandro Aparecido
    Oba Ramos, Caio Cesar
    Rodrigues, Douglas
    Pereira, Danillo Roberto
    de Souza, Andre Nunes
    Pontara da Costa, Kelton Augusto
    Papa, Joao Paulo
    ELECTRIC POWER SYSTEMS RESEARCH, 2016, 140 : 413 - 423
  • [5] LAND USE IMAGE CLASSIFICATION THROUGH OPTIMUM-PATH FOREST CLUSTERING
    Pisani, R.
    Riedel, P.
    Ferreira, M.
    Marques, M.
    Mizobe, R.
    Papa, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 826 - 829
  • [6] Automatic Classification of Fish Germ Cells Through Optimum-Path Forest
    Papa, Joao P.
    Gutierrez, Mario E. M.
    Nakamura, Rodrigo Y. M.
    Papa, Luciene P.
    Vicentini, Irene B. F.
    Vicentini, Carlos A.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 5084 - 5087
  • [7] Fast Optimum-Path Forest Classification on Graphics Processors
    Romero, Marcos V. T.
    Iwashita, Adriana S.
    Papa, Luciene P.
    Souza, Andre N.
    Papa, Joao P.
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 627 - 631
  • [8] Supervised Pattern Classification Based on Optimum-Path Forest
    Papa, J. P.
    Falcao, A. X.
    Suzuki, C. T. N.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2009, 19 (02) : 120 - 131
  • [9] ECG arrhythmia classification based on optimum-path forest
    Luz, Eduardo Jose da S.
    Nunes, Thiago M.
    de Albuquerque, Victor Hugo C.
    Papa, Joao P.
    Menotti, David
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (09) : 3561 - 3573
  • [10] Automatic Video Summarization Using the Optimum-Path Forest Unsupervised Classifier
    Castelo-Fernandez, Cesar
    Calderon-Ruiz, Guillermo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 760 - 767